Combining Electrochemical CO2 Capture with Catalytic Dry Methane Reforming in a Single Reactor for Low-Cost Syngas Production

被引:37
作者
Zhang, Peng [1 ]
Tong, Jingling [1 ]
Huang, Kevin [1 ]
机构
[1] Univ South Carolina, Dept Mech Engn, 541 Main St, Columbia, SC 29201 USA
关键词
Membrane reactor; Mixed conductor; Flux; Conversion rate; Catalyst; CARBON-DIOXIDE SEPARATION; DUAL-PHASE MEMBRANE; 3-DIMENSIONAL IONIC CHANNELS; HIGH-TEMPERATURE; CONVERSION; FLUX; NANOPARTICLES; PERFORMANCE; DEPOSITION; STABILITY;
D O I
10.1021/acssuschemeng.6b01960
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We here report a potentially low-cost catalytic dry methane reforming process to make syngas with CO2 electrochemically captured from a CO2 source via a mixed conducting membrane in a single reactor. The mixed conducting electrochemical membrane is a composite comprising an O2--conductor and molten carbonate phase, where the catalytic bed contains a Ni-MgO-1 wt % Pt (NMP) or LaNi0.6Fe0.4O3.delta (LNF) catalyst. The reactor with the NMP catalyst generally outperforms the LNF counterpart in CH4 conversion rate and syngas production yield. At 850 degrees C and over the NMP catalyst, the membrane reactor yields a CO2 permeation flux of 2.25 mL min(-1) cm(-2), a H-2 and CO production rate of 3.75 and 3.24 mL min(-1) cm(-2), respectively, and a CH4 conversion of 93.9%. The LNF catalyst shows a long activation period due to the slow Ni ex-solution process but does offer a better coking and coarsening resistance. Long-term stability tests show no apparent sign of degradation within 200 h. With 3% H2O added into methane, the reactor can produce a syngas with higher H-2/CO ratio preferable for liquid fuels synthesis. Overall, this work demonstrates the technical feasibility of a combined capture and conversion "all-in-one" CO2 reactor for dry reforming of CH4
引用
收藏
页码:7056 / 7065
页数:10
相关论文
共 69 条
[1]   EFFECTS OF DOPANTS ON PERFORMANCE OF METAL CRYSTALLITES .2. FURTHER CHARACTERIZATION OF DOPED SUPPORTS AND CATALYSTS [J].
AKUBUIRO, EC ;
VERYKIOS, XE .
JOURNAL OF CATALYSIS, 1988, 113 (01) :106-119
[2]   Carbon dioxide separation and dry reforming of methane for synthesis of syngas by a dual-phase membrane reactor [J].
Anderson, Matthew ;
Lin, Y. S. .
AICHE JOURNAL, 2013, 59 (06) :2207-2218
[3]   Carbonate-ceramic dual-phase membrane for carbon dioxide separation [J].
Anderson, Matthew ;
Lin, Y. S. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 357 (1-2) :122-129
[4]   Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex [J].
Angamuthu, Raja ;
Byers, Philip ;
Lutz, Martin ;
Spek, Anthony L. ;
Bouwman, Elisabeth .
SCIENCE, 2010, 327 (5963) :313-315
[5]   Methane reforming to syngas over LaNixFe1-xO3 (0 ≤ x ≤ 1) mixed-oxide perovskites in the presence of CO2 and O2 [J].
Arandiyan, Hamidreza ;
Li, Junhua ;
Ma, Lei ;
Hashemnejad, S. M. ;
Mirzaei, M. Z. ;
Chen, Jinghuan ;
Chang, Huazhen ;
Liu, Caixia ;
Wang, Chizhong ;
Chen, Liang .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2012, 18 (06) :2103-2114
[6]   PARTIAL OXIDATION OF METHANE TO SYNTHESIS GAS-USING CARBON-DIOXIDE [J].
ASHCROFT, AT ;
CHEETHAM, AK ;
GREEN, MLH ;
VERNON, PDF .
NATURE, 1991, 352 (6332) :225-226
[7]   Carbon Nanoparticles as Visible-Light Photocatalysts for Efficient CO2 Conversion and Beyond [J].
Cao, Li ;
Sahu, Sushant ;
Anilkumar, Parambath ;
Bunker, Christopher E. ;
Xu, Juan ;
Fernando, K. A. Shiral ;
Wang, Ping ;
Guliants, Elena A. ;
Tackett, Kenneth N., II ;
Sun, Ya-Ping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (13) :4754-4757
[8]   Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries [J].
Centi, Gabriele ;
Quadrelli, Elsje Alessandra ;
Perathoner, Siglinda .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1711-1731
[9]   The structure of catalytically active gold on titania [J].
Chen, MS ;
Goodman, DW .
SCIENCE, 2004, 306 (5694) :252-255
[10]   Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming [J].
Christensen, K. O. ;
Chen, D. ;
Lodeng, R. ;
Holmen, A. .
APPLIED CATALYSIS A-GENERAL, 2006, 314 (01) :9-22