Probabilistic optimal control of blood glucose under uncertainty

被引:0
作者
De Paula, Mariano [1 ]
Martinez, Ernesto [1 ]
机构
[1] INGAR CONICET UTN, Buenos Aires, DF, Argentina
来源
22 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING | 2012年 / 30卷
关键词
Gaussian processes; Dynamic programming; Diabetes; Optimal control;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Type 1 diabetes mellitus is a chronic disease requiring careful management of insulin infusion rates. A novel simulation-based approach to probabilistic optimal control of blood glucose concentration using Gaussian Process Dynamic Programming (GPDP) and Bayesian active learning is proposed. GPDP is an approximate value function method that integrates reinforcement learning with Gaussian Processes (GP) for seeking an optimal control policy in the face of an uncertain dynamics. The obtained control policy is compactly represented the hyper-parameters (mean and variance) of a Gaussian process over a wide range of physiological states to facilitate an "on-a-chip" implementation. Safe adaptation of the simulation-based control policy to a patient-specific lifestyle upon data is presented. Simulation results are very promising.
引用
收藏
页码:1357 / 1361
页数:5
相关论文
共 7 条
  • [1] Blood glucose regulation with stochastic optimal control for insulin-dependent diabetic patients
    Acikgoz, Saadet Ulas
    Diwekar, Urmila M.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2010, 65 (03) : 1227 - 1236
  • [2] Gaussian process dynamic programming
    Deisenroth, Marc Peter
    Rasmussen, Carl Edward
    Peters, Jan
    [J]. NEUROCOMPUTING, 2009, 72 (7-9) : 1508 - 1524
  • [3] MPC on a chip - Recent advances on the application of multi-parametric model-based control
    Dua, P.
    Kouramas, K.
    Dua, V.
    Pistikopoulos, E. N.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (4-5) : 754 - 765
  • [4] A switching control strategy for the attenuation of blood glucose disturbances
    Markakisl, Mihalis G.
    Mitsis, Georgios D.
    Papavassilopoulos, George P.
    Ioannou, Petros A.
    Marmarelis, Vasilis Z.
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2011, 32 (02) : 185 - 195
  • [5] Development of a multi-parametric model predictive control algorithm for insulin delivery in type 1 diabetes mellitus using clinical parameters
    Percival, M. W.
    Wang, Y.
    Grosman, B.
    Dassau, E.
    Zisser, H.
    Jovanovic, L.
    Doyle, F. J., III
    [J]. JOURNAL OF PROCESS CONTROL, 2011, 21 (03) : 391 - 404
  • [6] Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1
  • [7] Diabetes mellitus modeling and short-term prediction based on blood glucose measurements
    Stahl, F.
    Johansson, R.
    [J]. MATHEMATICAL BIOSCIENCES, 2009, 217 (02) : 101 - 117