Evaluation of Computer-aided Diagnosis on a Large Clinical Full-field Digital Mammographic Dataset

被引:29
作者
Li, Hui [1 ]
Giger, Maryellen L. [1 ]
Yuan, Yading [1 ]
Chen, Weijie [2 ]
Horsch, Karla [1 ]
Lan, Li [1 ]
Jamieson, Andrew R. [1 ]
Sennett, Charlene A. [1 ]
Jansen, Sanaz A. [1 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[2] US FDA, Lab Assessment Med Imaging Syst, Div Imaging & Appl Math, Off Sci & Engn Labs,CDRH, Silver Spring, MD USA
关键词
Computer-aided diagnosis; full-field digital mammography; breast mass classification;
D O I
10.1016/j.acra.2008.05.004
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives. To convert and optimize our previously developed computerized analysis methods for use with images from full-field digital mammography (FFDM) for breast mass classification to aid in the diagnosis of breast cancer. Materials and Methods. An institutional review board approved protocol was obtained, with waiver of consent for retrospective use of mammograms and pathology data. Seven hundred thirty-nine FFDM images, which contained 287 biopsy-proven breast mass lesions, of which 148 lesions were malignant and 139 lesions were benign, were retrospectively collected. Lesion margins were delineated by an expert breast radiologist and were used as the truth for lesion-segmentation evaluation. Our computerized image analysis method consisted of several steps: 1) identified lesions were automatically extracted from the parenchymal background using computerized segmentation methods: 2) a set of image characteristics (mathematic descriptors) were automatically extracted from image data of the lesions and surrounding tissues; and 3) selected features were merged into an estimate of the probability of malignancy using a Bayesian artificial neural network classifier. Performance of the analyses was evaluated at various stages of the conversion using receiver-operating characteristic analysis. Results. An area under the curve value of 0.81 was obtained in the task of distinguished between malignant and benign mass lesions in a round-robin by case evaluation on the entire FFDM dataset. We failed to show a statistically significant difference (P = .83) compared to results from our previous study in which the computerized classification was performed on digitized screen-film mammograms. Conclusions. Our computerized analysis methods developed on digitized screen-film mammography can be converted for use with FFDM. Results show that the computerized analysis methods for the diagnosis of breast mass lesions on FFDM are promising, and can potentially be used to aid clinicians in the diagnostic interpretation of FFDM.
引用
收藏
页码:1437 / 1445
页数:9
相关论文
共 43 条
[1]  
*AM COLL RAD, MQSA ACCR FULL FIELD
[2]  
[Anonymous], 1975, Discriminant Analysis
[3]  
Bishop CM., 1995, Neural networks for pattern recognition
[4]  
Boyd NF, 1998, CANCER EPIDEM BIOMAR, V7, P1133
[5]   Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images [J].
Chen, Weijie ;
Giger, Maryellen L. ;
Li, Hui ;
Bick, Ulrich ;
Newstead, Gillian M. .
MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (03) :562-571
[6]   Breast cancer risk reduction: Strategies for women at increased risk [J].
Chlebowski, RT .
ANNUAL REVIEW OF MEDICINE, 2002, 53 :519-540
[7]   Comparison of standard and double reading and computer-aided detection (CAD) of interval cancers at prior negative screening mammograms: blind review [J].
Ciatto, S ;
Del Turco, MR ;
Burke, P ;
Visioli, C ;
Paci, E ;
Zappa, M .
BRITISH JOURNAL OF CANCER, 2003, 89 (09) :1645-1649
[8]   Diagnostic accuracy of Fischer SenoScan digital mammography versus screen-film mammography in a diagnostic mammography population [J].
Cole, E ;
Pisano, ED ;
Brown, M ;
Kuzmiak, C ;
Braeuning, MP ;
Kim, HH ;
Jong, R ;
Walsh, R .
ACADEMIC RADIOLOGY, 2004, 11 (08) :879-886
[9]   Computer aided detection of clusters of microcalcifications on full field digital mammograms [J].
Ge, Jun ;
Sahiner, Berkman ;
Hadjiiski, Lubomir M. ;
Chan, Heang-Ping ;
Wei, Jun ;
Helvie, Mark A. ;
Zhou, Chuan .
MEDICAL PHYSICS, 2006, 33 (08) :2975-2988
[10]   Computerized analysis of images in the detection and diagnosis of breast cancer [J].
Giger, ML .
SEMINARS IN ULTRASOUND CT AND MRI, 2004, 25 (05) :411-418