Solvable Lie algebra condition for stability of linear multidimensional systems

被引:3
作者
Chu, TG [1 ]
Zhang, CS
Wang, L
机构
[1] Peking Univ, Dept Engn Sci & Mech, Ctr Syst & Control, Intelligent Control Lab, Beijing 100871, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 639798, Singapore
关键词
comparison method; exponential stability; multidimensional systems; solvable Lie algebra;
D O I
10.1109/TAC.2005.863516
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note analyzes exponential stability of a class of linear discrete multidimensional systems. Using a multidimensional comparison principle for estimating the system componentwise exponential convergence and a solvable Lie algebra condition, a sufficient condition for exponential stability of linear multidimensional systems is presented. The stability condition can be easily examined by computing the system matrices in finite steps. This is demonstrated by an example.
引用
收藏
页码:320 / 324
页数:5
相关论文
共 22 条
  • [1] THE DISCRETE-TIME STRICTLY BOUNDED-REAL LEMMA AND THE COMPUTATION OF POSITIVE DEFINITE SOLUTIONS TO THE 2-D LYAPUNOV EQUATION
    AGATHOKLIS, P
    JURY, EI
    MANSOUR, M
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1989, 36 (06): : 830 - 837
  • [2] STABILITY AND THE MATRIX LYAPUNOV EQUATION FOR DISCRETE TWO-DIMENSIONAL SYSTEMS
    ANDERSON, BDO
    AGATHOKLIS, P
    JURY, EI
    MANSOUR, M
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (03): : 261 - 267
  • [3] [Anonymous], 1986, MULTIDIMENSIONAL SYS
  • [4] STABILITY ANALYSIS OF MULTIDIMENSIONAL (M-D) DIRECT REALIZATION DIGITAL-FILTERS UNDER THE INFLUENCE OF NONLINEARITIES
    BAUER, P
    JURY, EI
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (11): : 1770 - 1780
  • [5] BOSE NK, 1985, MULTIDIMENSIONAL SYS
  • [6] CHU T, 2002, P 15 IFAC WORLD C BA
  • [7] Chu TG, 2005, 2005 INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), VOLS 1 AND 2, P593
  • [8] Chu TG, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P6454
  • [9] STABILITY ANALYSIS OF 2-D SYSTEMS
    FORNASINI, E
    MARCHESINI, G
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1980, 27 (12): : 1210 - 1217
  • [10] 2-D LYAPUNOV EQUATION AND FILTER DESIGN BASED ON THE FORNASINI-MARCHESINI 2ND MODEL
    HINAMOTO, T
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (02): : 102 - 110