Height zeta functions on generalized projective toric varieties

被引:3
|
作者
Essouabri, Driss [1 ]
机构
[1] Univ St Etienne, Univ Lyon, PRES, Fac Sci,Dept Math, F-42023 St Etienne 2, France
来源
ZETA FUNCTIONS IN ALGEBRA AND GEOMETRY | 2012年 / 566卷
关键词
Manin's conjecture; heights; rational points; zeta functions; meromorphic continuation; Newton polyhedron; DIRICHLET SERIES; TAMAGAWA MEASURES; MEROMORPHY; INTEGRALS; POINTS;
D O I
10.1090/conm/566/11216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the analytic properties of height zeta functions associated to generalized projective toric varieties. As an application, we obtain asymptotic expansions of the counting functions of rational points of generalized projective toric varieties provided with a large class of heights.
引用
收藏
页码:65 / 98
页数:34
相关论文
共 50 条