Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces

被引:12
作者
Chen, Dongxiang [1 ]
Wang, Yuxi [2 ]
Zhang, Zhifei [2 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
ZERO-VISCOSITY LIMIT; ILL-POSEDNESS; EXISTENCE; EULER;
D O I
10.1016/j.jde.2018.01.0240022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the paralinearization technique, we prove the well-posedness of the Prandtl equation for monotonic data in anisotropic Sobolev space with exponential weight and low regularity. The proof is very elementary, thus is expected to provide a new possible way for the zero-viscosity limit problem of the Navier-Stokes equations with the non-slip boundary condition. (c) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:5870 / 5893
页数:24
相关论文
共 15 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]  
Bahouri Hajer, 2011, FOURIER ANAL NONLINE, V343
[3]   Remarks on the ill-posedness of the Prandtl equation [J].
Gerard-Varet, D. ;
Nguyen, T. .
ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) :71-88
[4]  
Gerard-Varet D., ARXIV13050221
[5]  
Gérard-Varet D, 2010, J AM MATH SOC, V23, P591
[6]   A Note on Prandtl Boundary Layers [J].
Guo, Yan ;
Toan Nguyen .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (10) :1416-1438
[7]   ON THE LOCAL WELL-POSEDNESS OF THE PRANDTL AND HYDROSTATIC EULER EQUATIONS WITH MULTIPLE MONOTONICITY REGIONS [J].
Kukavica, Igor ;
Masmoudi, Nader ;
Vicol, Vlad ;
Wong, Tak Kwong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) :3865-3890
[8]   Well-posedness of the boundary layer equations [J].
Lombardo, MC ;
Cannone, M ;
Sammartino, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) :987-1004
[9]   Local-in-Time Existence and Uniqueness of Solutions to the Prandtl Equations by Energy Methods [J].
Masmoudi, Nader ;
Wong, Tak Kwong .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (10) :1683-1741
[10]  
Oleinik O A., 1999, Mathematical Models in Boundary Layer Theory, V15