Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system

被引:16
作者
Besse, N
Kröner, D
机构
[1] Univ Strasbourg, CNRS, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] Univ Freiburg, Inst Angew Math, D-79104 Freiburg, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2005年 / 39卷 / 06期
关键词
magnetohydrodynamics; discontinuous-Galerkin methods; convergence analysis;
D O I
10.1051/m2an:2005051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition Delta t similar to h(4/3), we obtain error estimates in L-2 of order O(Delta t(2) + h(m+1/2)) where m is the degree of the local polynomials.
引用
收藏
页码:1177 / 1202
页数:26
相关论文
共 24 条
[1]  
[Anonymous], 1994, APPROXIMATE RIEMANN
[2]  
[Anonymous], SC NORM SUPER PISA I
[3]  
[Anonymous], 1991, OPERATEURS PSEUDO DI
[4]   PIECEWISE SOLENOIDAL VECTOR-FIELDS AND THE STOKES PROBLEM [J].
BAKER, GA ;
JUREIDINI, WN ;
KARAKASHIAN, OA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1466-1485
[5]   A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations [J].
Balsara, DS ;
Spicer, DS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :270-292
[6]   THE EFFECT OF NONZERO-DEL.B ON THE NUMERICAL-SOLUTION OF THE MAGNETO-HYDRODYNAMIC EQUATIONS [J].
BRACKBILL, JU ;
BARNES, DC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 35 (03) :426-430
[7]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0
[8]   Locally divergence-free discontinuous Galerkin methods for the Maxwell equations [J].
Cockburn, B ;
Li, FY ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (02) :588-610
[9]  
COCKBURN B, 1999, LECT NOTES COMPUTATI, V9, P69
[10]   A density result for the regularized Maxwell equations in a Lipschitz domain [J].
Costabel, M ;
Dauge, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (09) :849-854