Identification of Small Molecule Proliferating Cell Nuclear Antigen (PCNA) Inhibitor That Disrupts Interactions with PIP-box Proteins and Inhibits DNA Replication
被引:109
|
作者:
Punchihewa, Chandanamali
论文数: 0引用数: 0
h-index: 0
机构:
St Jude Childrens Res Hosp, Dept Chem Biol & Therapeut, Memphis, TN 38105 USASt Jude Childrens Res Hosp, Dept Chem Biol & Therapeut, Memphis, TN 38105 USA
Punchihewa, Chandanamali
[1
]
Inoue, Akira
论文数: 0引用数: 0
h-index: 0
机构:
St Jude Childrens Res Hosp, Dept Chem Biol & Therapeut, Memphis, TN 38105 USASt Jude Childrens Res Hosp, Dept Chem Biol & Therapeut, Memphis, TN 38105 USA
Inoue, Akira
[1
]
Hishiki, Asami
论文数: 0引用数: 0
h-index: 0
机构:
Yokohama City Univ, Dept Supramol Biol, Grad Sch Integrated Sci, Yokohama, Kanagawa 2300045, JapanSt Jude Childrens Res Hosp, Dept Chem Biol & Therapeut, Memphis, TN 38105 USA
We have discovered that 3,3',5-triiodothyronine (T3) inhibits binding of a PIP-box sequence peptide to proliferating cell nuclear antigen (PCNA) protein by competing for the same binding site, as evidenced by the co-crystal structure of the PCNA-T3 complex at 2.1 angstrom resolution. Based on this observation, we have designed a novel, non-peptide small molecule PCNA inhibitor, T2 amino alcohol (T2AA), a T3 derivative that lacks thyroid hormone activity. T2AA inhibited interaction of PCNA/PIP-box peptide with an IC50 of similar to 1 mu M and also PCNA and full-length p21 protein, the tightest PCNA ligand protein known to date. T2AA abolished interaction of PCNA and DNA polymerase delta in cellular chromatin. De novo DNA synthesis was inhibited by T2AA, and the cells were arrested in S-phase. T2AA inhibited growth of cancer cells with induction of early apoptosis. Concurrently, Chk1 and RPA32 in the chromatin are phosphorylated, suggesting that T2AA causes DNA replication stress by stalling DNA replication forks. T2AA significantly inhibited translesion DNA synthesis on a cisplatin-cross-linked template in cells. When cells were treated with a combination of cisplatin and T2AA, a significant increase in phospho(Ser(139))histone H2AX induction and cell growth inhibition was observed.