Perturbation theory for propagating magnetic droplet solitons

被引:19
作者
Bookman, L. D. [1 ]
Hoefer, M. A. [2 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2015年 / 471卷 / 2179期
基金
美国国家科学基金会;
关键词
perturbation theory; solitons; magnetic films; modulation theory; SPIN-WAVES; DYNAMICS; EXCITATION; TORQUE; MULTILAYER; STABILITY; STATES;
D O I
10.1098/rspa.2015.0042
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Droplet solitons are strongly nonlinear, inherently dynamic structures in the magnetization of ferromagnets, balancing dispersion (exchange energy) with focusing nonlinearity (strong perpendicular anisotropy). Large droplet solitons have the approximate form of a circular domain wall sustained by precession and, in contrast to single magnetic vortices, are predicted to propagate in an extended, homogeneous magnetic medium. In this work, multiscale perturbation theory is used to develop an analytical framework for investigating the impact of additional physical effects on the behaviour of a propagating droplet. After first developing soliton perturbation theory in the general context of Hamiltonian systems, a number of physical phenomena of current interest are investigated. These include droplet-droplet and droplet-boundary interactions, spatial magnetic field inhomogeneities, spin transfer torque induced forcing in a nanocontact device and damping. Their combined effects demonstrate the fundamental mechanisms for a previously observed droplet drift instability and under what conditions a slowly propagating droplet can be supported by the nanocontact, important considerations for applications. This framework emphasizes the particle-like dynamics of the droplet, providing analytically tractable and practical predictions for modern experimental configurations.
引用
收藏
页数:20
相关论文
共 47 条
  • [1] Perturbations of dark solitons
    Ablowitz, M. J.
    Nixon, S. D.
    Horikis, T. P.
    Frantzeskakis, D. J.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2133): : 2597 - 2621
  • [2] Ablowitz M. J., 1981, Solitons and the Inverse Scattering Transform
  • [3] Asymptotic Analysis of Pulse Dynamics in Mode-Locked Lasers
    Ablowitz, Mark J.
    Horikis, Theodoros P.
    Nixon, Sean D.
    Zhu, Yi
    [J]. STUDIES IN APPLIED MATHEMATICS, 2009, 122 (04) : 411 - 425
  • [4] Relaxation of Bloch oscillations of a magnetic soliton in a nonuniform magnetic field
    Babich, IM
    Kosevich, AM
    [J]. LOW TEMPERATURE PHYSICS, 2001, 27 (01) : 35 - 39
  • [5] Emission of spin waves by a magnetic multilayer traversed by a current
    Berger, L
    [J]. PHYSICAL REVIEW B, 1996, 54 (13): : 9353 - 9358
  • [6] Analytical theory of modulated magnetic solitons
    Bookman, L. D.
    Hoefer, M. A.
    [J]. PHYSICAL REVIEW B, 2013, 88 (18):
  • [7] Bookman LD., 2015, THESIS N CAROLINA ST
  • [8] Champneys A. R., 2007, Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, P331, DOI [10.1007/978-1-4020-6356-511, DOI 10.1007/978-1-4020-6356-511, DOI 10.1007/978-1-4020-6356-5]
  • [9] Spin transfer torque generated magnetic droplet solitons (invited)
    Chung, S.
    Mohseni, S. M.
    Sani, S. R.
    Iacocca, E.
    Dumas, R. K.
    Nguyen, T. N. Anh
    Pogoryelov, Ye
    Muduli, P. K.
    Eklund, A.
    Hoefer, M.
    Akerman, J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [10] DELEEUW FH, 1980, REP PROG PHYS, V43, P689, DOI 10.1088/0034-4885/43/6/001