Short-term Power Forecasting of Small-scale hydropower based on Projection Pursuit Algorithm

被引:0
作者
Liu, Wenxia [1 ]
Zhou, Xi [1 ]
Xu, Xiaobo [1 ]
Xu, Meimei
机构
[1] North China Elect Power Univ, Transmiss & Distribut Syst Res Inst, Beijing, Peoples R China
来源
INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3 | 2013年 / 336-338卷
关键词
Small-scale hydropower; Short-term Power Forecasting; Projection Pursuit Algorithm; Threshold Regression Model;
D O I
10.4028/www.scientific.net/AMM.336-338.764
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Compared with other traditional energy, the small-scale hydropower which is intermittent energy can not be stored and scheduled. The greater fluctuant of the output power of small-scale hydropower leads to great difficult to the operation of the power system. Most of the existing small-scale hydropower forecasting is considered as the load forecasting factors, and there is not effective forecasting method. This paper establishes an output power forecasting model of the small-scale hydropower based on Projection Pursuit. The simulation results show that the new algorithm has a strong practical application in the small-scale hydropower output power forecasting and the forecast accuracy meets the scheduling requirements.
引用
收藏
页码:764 / +
页数:3
相关论文
共 9 条
[1]   The Novel Short-term Power Forecasting Research for PV Plant Based on Neural Network [J].
Lai, J. G. ;
Zhou, H. ;
Hu, W. S. .
INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL AND ELECTRICAL ENGINEERING (AMEE 2015), 2015, :697-704
[2]   Short-term power load forecasting based on Least Squares Support Vector Machine optimized by Bare Bones Fireworks algorithm [J].
Lei, Caijia ;
Fang, Binghua ;
Gao, Hui ;
Jia, Wei ;
Pan, Wei .
PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, :2231-2235
[3]   Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM [J].
Wang, Jidong ;
Ran, Ran ;
Song, Zhilin ;
Sun, Jiawen .
JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2017, 12 (01) :64-71
[4]   Short-term Power Forecasting of Distributed Photovoltaic Station Clusters Based on Affinity Propagation Clustering and Long Short-term Time-series Network [J].
Wang X. ;
Yu M. ;
Huo Z. ;
Yang D. .
Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (06) :133-141
[5]   Short-Term Power Forecasting for Wind Power Generation under Extreme Weather Conditions [J].
Song, Yuexin ;
Chen, Yizhi ;
Tang, Chenghong ;
Wang, Wei ;
Xiao, Hao ;
Pei, Wei ;
Yang, Yanhong .
2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, :1905-1911
[6]   Short-term Power Forecasting Model Based on Dimensionality Reduction and Deep Learning Techniques for Smart Grid [J].
Syed, Dabeeruddin ;
Refaat, Shady S. ;
Abu-Rub, Haitham ;
Bouhali, Othmane .
2020 IEEE KANSAS POWER AND ENERGY CONFERENCE (KPEC), 2020,
[7]   Distributed Photovoltaic Station Cluster Short-term Power Forecasting Part II: Gridding Prediction [J].
Qiao Y. ;
Sun R. ;
Ding R. ;
Li S. ;
Lu Z. .
Dianwang Jishu/Power System Technology, 2021, 45 (06) :2210-2218
[8]   Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour [J].
du Plessis, A. A. ;
Strauss, J. M. ;
Rix, A. J. .
APPLIED ENERGY, 2021, 285
[9]   Potenzial von Machine Learning bei der kurzfristigen Leistungsprognose innerhalb einer LaufkraftwerkskettePerformance of Machine Learning in short-term power forecasting within a run-of-river power plant chain [J].
Christoph Klingler ;
Moritz Feigl ;
Thomas Linsbichler ;
Simon Frey ;
Karsten Schulz .
Österreichische Wasser- und Abfallwirtschaft, 2022, 74 (5-6) :224-240