Low-degree planar monomials in characteristic two

被引:6
作者
Mueller, Peter [1 ]
Zieve, Michael E. [2 ]
机构
[1] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Planar function; Projective plane; COLLINEATION GROUPS; POLYNOMIALS; FIELDS;
D O I
10.1007/s10801-015-0597-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Planar functions over finite fields give rise to finite projective planes and other combinatorial objects. They exist only in odd characteristic, but recently Zhou introduced an even characteristic analogue which has similar applications. In this paper we determine all planar functions on of the form , where is a power of , is an integer with , and . This settles and sharpens a conjecture of Schmidt and Zhou.
引用
收藏
页码:695 / 699
页数:5
相关论文
共 18 条
[1]  
[Anonymous], LECT NOTES COMPUTER
[2]  
[Anonymous], 2015, ijppaw, DOI DOI 10.1016/j.tpb.2015.06.003
[3]  
Aubry Y, 1996, ARITHMETIC, GEOMETRY AND CODING THEORY, P1
[4]  
Capelli A., 1898, REND ACCAD SCI FIS, V4
[5]   Linear codes from perfect nonlinear mappings and their secret sharing schemes [J].
Carlet, C ;
Ding, CS ;
Yuan, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) :2089-2102
[6]   PLANES OF ORDER N WITH COLLINEATION GROUPS OF ORDER N2 [J].
DEMBOWSKI, P ;
OSTROM, TG .
MATHEMATISCHE ZEITSCHRIFT, 1968, 103 (03) :239-&
[7]  
Fried M.D., 1986, ERGEB MATH GRENZGEB
[8]   RELATIVE DIFFERENCE SETS AND QUASIREGULAR COLLINEATION GROUPS [J].
GANLEY, MJ ;
SPENCE, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 19 (02) :134-153
[9]   THE NUMBER OF POINTS ON A SINGULAR CURVE OVER A FINITE-FIELD [J].
LEEP, DB ;
YEOMANS, CC .
ARCHIV DER MATHEMATIK, 1994, 63 (05) :420-426
[10]  
Lidl R., 1983, Finite Fields