Surface for Catalysis by Poliovirus RNA-Dependent RNA Polymerase

被引:8
|
作者
Wang, Jing [1 ]
Lyle, John M. [2 ]
Bullitt, Esther [1 ]
机构
[1] Boston Univ, Sch Med, Dept Physiol & Biophys, Boston, MA 02118 USA
[2] Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94301 USA
基金
美国国家卫生研究院;
关键词
helical reconstruction; ghost reflection; membrane; oligomerization; cryo-electron microscopy; STRUCTURAL BASIS; CRYOELECTRON MICROSCOPY; PROTEIN; 3AB; VPG; RECONSTRUCTION; URIDYLYLATION; REPLICATION; 3D(POL); VIRUS; OLIGOMERIZATION;
D O I
10.1016/j.jmb.2013.04.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The poliovirus RNA-dependent RNA polymerase, 3Dpol, replicates the viral genomic RNA on the surface of virus-induced intracellular membranes. Macromolecular assemblies of 3Dpol form linear arrays of subunits that propagate along a strong protein-protein interaction called interface-I, as was observed in the crystal structure of wild-type poliovirus polynnerase. These "filaments" recur with slight modifications in planar sheets and, with additional modifications that accommodate curvature, in helical tubes of the polymerase, by packing filaments together via a second set of interactions. Periodic variations of subunit orientations within 3Dpol tubes give rise to "ghost reflections" in diffraction patterns computed from electron cryomicrographs of helical arrays. The ghost reflections reveal that polymerase tubes are formed by bundles of four to five interface-I filaments, which are then connected to the next bundle of filaments with a perturbation of interface interactions between bundles. While enzymatically inactive polymerase is also capable of oligomerization, much thinner tubes that lack interface-I interactions between adjacent subunits are formed, suggesting that long-range allostery produces conformational changes that extend from the active site to the protein-protein interface. Macromolecular assemblies of poliovirus polymerase show repeated use of flexible interface interactions for polymerase lattice formation, suggesting that adaptability of polymerase-polymerase interactions facilitates RNA replication. In addition, the presence of a positively charged groove identified in polymerase arrays may help position and stabilize the RNA template during replication. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2529 / 2540
页数:12
相关论文
共 50 条
  • [41] RNA-dependent RNA polymerase (RdRp) natural antiviral inhibitors: a review
    Buch Leite, Daniela Regina
    Mantovani, Karen Mary
    Cordeiro, Solange Pereira
    Maia, Filipe Barros
    Martins Betim, Fernando Cesar
    Sartor, Elisiane de Bona
    Montrucchio, Deise Prehs
    Gaspari Dias, Josiane de Fatima
    Miguel, Obdulio Gomes
    Miguel, Marilis Dallarmi
    MEDICINAL CHEMISTRY RESEARCH, 2022, 31 (12) : 2089 - 2102
  • [42] SARS-CoV-2 RNA-dependent RNA polymerase as a target for high-throughput drug screening
    Wu, Jiahui
    Chen, Zhiqiang
    Han, Xue
    Chen, Qiaoqiao
    Wang, Yintao
    Feng, Tingting
    FUTURE VIROLOGY, 2023, : 51 - 62
  • [43] Identification and functional characterization of the nascent RNA contacting residues of the hepatitis C virus RNA-dependent RNA polymerase
    Vaughan, Robert
    Fan, Baochang
    You, Jin-Sam
    Kao, C. Cheng
    RNA, 2012, 18 (08) : 1541 - 1552
  • [44] Insight into the Hantaan virus RNA-dependent RNA polymerase inhibition using in-silico approaches
    Faisal, Shah
    Badshah, Syed Lal
    Sharaf, Mohamed
    Abdalla, Mohnad
    MOLECULAR DIVERSITY, 2023, 27 (06) : 2505 - 2522
  • [45] A novel mechanism of enhanced transcription activity and fidelity for influenza A viral RNA-dependent RNA polymerase
    Xu, Xinzhou
    Zhang, Lu
    Chu, Julie Tung Sem
    Wang, Yuqing
    Chin, Alex Wing Hong
    Chong, Tin Hang
    Dai, Zixi
    Poon, Leo Lit Man
    Cheung, Peter Pak-Hang
    Huang, Xuhui
    NUCLEIC ACIDS RESEARCH, 2021, 49 (15) : 8796 - 8810
  • [46] Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action
    Tchesnokov, Egor P.
    Gordon, Calvin J.
    Woolner, Emma
    Kocinkova, Dana
    Perry, Jason K.
    Feng, Joy Y.
    Porter, Danielle P.
    Gotte, Matthias
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (47) : 16156 - 16165
  • [47] Crystal structures of murine norovirus-1 RNA-dependent RNA polymerase
    Lee, Ji-Hye
    Alam, Intekhab
    Han, Kang Rok
    Cho, Sunyoung
    Shin, Sungho
    Kang, Seokha
    Yang, Jai Myung
    Kim, Kyung Hyun
    JOURNAL OF GENERAL VIROLOGY, 2011, 92 : 1607 - 1616
  • [48] Crystal structure of the RNA-dependent RNA polymerase from influenza C virus
    Hengrung, Narin
    El Omari, Kamel
    Martin, Itziar Serna
    Vreede, Frank T.
    Cusack, Stephen
    Rambo, Robert P.
    Vonrhein, Clemens
    Bricogne, Gerard
    Stuart, David I.
    Grimes, Jonathan M.
    Fodor, Ervin
    NATURE, 2015, 527 (7576) : 114 - 117
  • [49] Production and characterization of active hepatitis C virus RNA-dependent RNA polymerase
    Ryu, Kisun
    Kim, Kyun-Hwan
    Yoo, Seong-Yeon
    Lee, Eun-Young
    Lim, Keo-Heun
    Min, Mi-Kyung
    Kim, Hajeong
    Choi, Seong Il
    Seong, Bail L.
    PROTEIN EXPRESSION AND PURIFICATION, 2010, 71 (02) : 147 - 152
  • [50] From RNA to DNA: Emergence of reverse transcriptases from an ancestral RNA-dependent RNA polymerase
    de Farias, Savio Torres
    Nunes-Alves, Ana Karoline
    Jose, Marco
    BIOSYSTEMS, 2024, 246