Surface for Catalysis by Poliovirus RNA-Dependent RNA Polymerase

被引:8
|
作者
Wang, Jing [1 ]
Lyle, John M. [2 ]
Bullitt, Esther [1 ]
机构
[1] Boston Univ, Sch Med, Dept Physiol & Biophys, Boston, MA 02118 USA
[2] Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94301 USA
基金
美国国家卫生研究院;
关键词
helical reconstruction; ghost reflection; membrane; oligomerization; cryo-electron microscopy; STRUCTURAL BASIS; CRYOELECTRON MICROSCOPY; PROTEIN; 3AB; VPG; RECONSTRUCTION; URIDYLYLATION; REPLICATION; 3D(POL); VIRUS; OLIGOMERIZATION;
D O I
10.1016/j.jmb.2013.04.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The poliovirus RNA-dependent RNA polymerase, 3Dpol, replicates the viral genomic RNA on the surface of virus-induced intracellular membranes. Macromolecular assemblies of 3Dpol form linear arrays of subunits that propagate along a strong protein-protein interaction called interface-I, as was observed in the crystal structure of wild-type poliovirus polynnerase. These "filaments" recur with slight modifications in planar sheets and, with additional modifications that accommodate curvature, in helical tubes of the polymerase, by packing filaments together via a second set of interactions. Periodic variations of subunit orientations within 3Dpol tubes give rise to "ghost reflections" in diffraction patterns computed from electron cryomicrographs of helical arrays. The ghost reflections reveal that polymerase tubes are formed by bundles of four to five interface-I filaments, which are then connected to the next bundle of filaments with a perturbation of interface interactions between bundles. While enzymatically inactive polymerase is also capable of oligomerization, much thinner tubes that lack interface-I interactions between adjacent subunits are formed, suggesting that long-range allostery produces conformational changes that extend from the active site to the protein-protein interface. Macromolecular assemblies of poliovirus polymerase show repeated use of flexible interface interactions for polymerase lattice formation, suggesting that adaptability of polymerase-polymerase interactions facilitates RNA replication. In addition, the presence of a positively charged groove identified in polymerase arrays may help position and stabilize the RNA template during replication. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2529 / 2540
页数:12
相关论文
共 50 条
  • [21] Investigation of activity of recombinant mengovirus RNA-dependent RNA polymerase and its mutants
    Shatskaya, G. S.
    Drutsa, V. L.
    Koroleva, O. N.
    Osterman, I. A.
    Dmitrieva, T. M.
    BIOCHEMISTRY-MOSCOW, 2013, 78 (01) : 96 - 101
  • [22] Vertical transmission in Caenorhabditis nematodes of RNA molecules encoding a viral RNA-dependent RNA polymerase
    Richaud, Aurelien
    Frezal, Lise
    Tahan, Stephen
    Jiang, Hongbing
    Blatter, Joshua A.
    Zhao, Guoyan
    Kaur, Taniya
    Wang, David
    Felix, Marie-Anne
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (49) : 24738 - 24747
  • [23] RNA-Dependent RNA Polymerase from Heterobasidion RNA Virus 6 Is an Active Replicase In Vitro
    Levanova, Alesia A.
    Vainio, Eeva J.
    Hantula, Jarkko
    Poranen, Minna M.
    VIRUSES-BASEL, 2021, 13 (09):
  • [24] An RNA-dependent RNA polymerase gene of a distinct Brazilian tospovirus
    de Oliveira, Athos Silva
    Machado Bertran, Andre Gustavo
    Inoue-Nagata, Alice Kazuko
    Nagata, Tatsuya
    Kitajima, Elliot Watanabe
    Resende, Renato Oliveira
    VIRUS GENES, 2011, 43 (03) : 385 - 389
  • [25] Rational Control of Poliovirus RNA-Dependent RNA Polymerase Fidelity by Modulating Motif-D Loop Conformational Dynamics
    Shi, Jingjing
    Perryman, Jacob M.
    Yang, Xiaorong
    Liu, Xinran
    Musser, Derek M.
    Boehr, Alyson K.
    Moustafa, Ibrahim M.
    Arnold, Jamie J.
    Cameron, Craig E.
    Boehr, David D.
    BIOCHEMISTRY, 2019, 58 (36) : 3735 - 3743
  • [26] Initiation of RNA Synthesis by the Hepatitis C Virus RNA-Dependent RNA Polymerase Is Affected by the Structure of the RNA Template
    Reich, Stefan
    Kovermann, Michael
    Lilie, Hauke
    Knick, Paul
    Geissler, Rene
    Golbik, Ralph Peter
    Balbach, Jochen
    Behrens, Sven-Erik
    BIOCHEMISTRY, 2014, 53 (44) : 7002 - 7012
  • [27] RNA polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA
    Wagner, Stacey D.
    Yakovchuk, Petro
    Gilman, Benjamin
    Ponicsan, Steven L.
    Drullinger, Linda F.
    Kugel, Jennifer F.
    Goodrich, James A.
    EMBO JOURNAL, 2013, 32 (06) : 781 - 790
  • [28] The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site
    Vives-Adrian, Laia
    Lujan, Celia
    Oliva, Baldo
    van der Linden, Lonneke
    Selisko, Barbara
    Coutard, Bruno
    Canard, Bruno
    van Kuppeveld, Frank J. M.
    Ferrer-Orta, Cristina
    Verdaguer, Nuria
    JOURNAL OF VIROLOGY, 2014, 88 (10) : 5595 - 5607
  • [29] The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2
    Jin, Zhenming
    Wang, Haofeng
    Duan, Yinkai
    Yang, Haitao
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 538 : 63 - 71
  • [30] Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir
    Yin, Wanchao
    Mao, Chunyou
    Luan, Xiaodong
    Shen, Dan-Dan
    Shen, Qingya
    Su, Haixia
    Wang, Xiaoxi
    Zhou, Fulai
    Zhao, Wenfeng
    Gao, Minqi
    Chang, Shenghai
    Xie, Yuan-Chao
    Tian, Guanghui
    Jiang, He-Wei
    Tao, Sheng-Ce
    Shen, Jingshan
    Jiang, Yi
    Jiang, Hualiang
    Xu, Yechun
    Zhang, Shuyang
    Zhang, Yan
    Xu, H. Eric
    SCIENCE, 2020, 368 (6498) : 1499 - +