Frame Bound Computation of Two-dimensional Filter Bank Frames
被引:0
作者:
Pan, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R ChinaWuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
Pan, Yu
[1
]
Chai, Li
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R ChinaWuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
Chai, Li
[1
]
Sheng, Yuxia
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R ChinaWuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
Sheng, Yuxia
[1
]
机构:
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
来源:
2013 10TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA)
|
2013年
关键词:
BASES;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
The upper (lower) bound of a frame is an important index in the analysis and design of filter bank frames. There is lack of effectively numerical methods to compute the frame bounds for two-dimensional (2-D) filter banks (FBs). This paper investigates the computation problem of frame bounds and provides a frequency-independent solution. Firstly, the state space realization of 2-D FIR discrete FBs is given in the form of Roesser model. Then an LMI based optimization method is presented by using the generalized Kalman-Yakubovich-Popov (KYP) lemma. Finally, various examples are given on wavelet and Laplacian pyramid frames to demonstrate the effectiveness of the proposed method for 2-D frames.