On Impulsive Hyperbolic Differential Inclusions with Nonlocal Initial Conditions

被引:33
作者
Chang, Y. -K. [1 ]
Nieto, J. J. [2 ]
Li, W. -S. [1 ]
机构
[1] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Gansu, Peoples R China
[2] Univ Santiago Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
关键词
Impulsive inclusions; Hyperbolic differential inclusions; Multivalued maps; Fixed points; Nonlocal initial conditions; PERIODIC PROBLEMS; EXISTENCE; EQUATIONS; TRAJECTORIES; MODELS;
D O I
10.1007/s10957-008-9468-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper is focused mainly upon existence of solutions for a second-order impulsive hyperbolic differential inclusions with nonlocal initial conditions. By using some well-known fixed-point theorems, existence theorems are established when the multivalued map has convex or nonconvex values. As applications of these main theorems, some consequences are given for the sublinear growth cases.
引用
收藏
页码:431 / 442
页数:12
相关论文
共 34 条
[1]  
BELARBI A, 2006, J DIFFER EQUATIONS, P1
[2]   Existence theory for perturbed impulsive hyperbolic differential inclusions with variable times [J].
Belarbi, Abdelkader ;
Benchohra, Mouffak .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :1116-1129
[3]  
Benchohra M., 2003, Appl. Anal, V82, P1085, DOI [10.1080/00036810310001613160, DOI 10.1080/00036810310001613160]
[4]  
Benchora M., 2003, Miskolc Math. Notes, V4, P81, DOI [10.18514/MMN.2003.61, DOI 10.18514/MMN.2003.61]
[5]  
BENCHORA M, 2006, IMPULSIVE DIFFERENTI
[6]  
Bohnenblust H., 1950, Contributions to the theory of games, V1, P155
[7]   EXTENSIONS AND SELECTIONS OF MAPS WITH DECOMPOSABLE VALUES [J].
BRESSAN, A ;
COLOMBO, G .
STUDIA MATHEMATICA, 1988, 90 (01) :69-86
[8]   Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions [J].
Chang, YK ;
Li, WT .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (3-4) :377-384
[9]   Existence results for second order impulsive functional differential inclusions [J].
Chang, YK ;
Li, WT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (02) :477-490
[10]  
CHANG YK, 2006, J APPL MATH STOCH AN, P1