Nonhomogeneous Boundary Value Problem for One-Dimensional Compressible Viscous Micropolar Fluid Model: Regularity of the Solution

被引:40
作者
Mujakovic, Nermina [1 ]
机构
[1] Univ Rijeka, Fac Philosophy, Dept Math, Rijeka 51000, Croatia
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation; Fluid Model;
D O I
10.1155/2008/189748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for 1D flow of a compressible viscous heat-conducting micropolar fluid is considered; the fluid is thermodynamically perfect and polytropic. Assuming that the initial data are Holder continuous on ]0, 1[ and transforming the original problem into homogeneous one, we prove that the state function is Holder continuous on ]0, 1[x]0, T[, for each T > 0. The proof is based on a global-in-time existence theorem obtained in the previous research paper and on a theory of parabolic equations.
引用
收藏
页数:15
相关论文
共 9 条
[1]  
Antontsev S.N., 1990, STUDIES MATH ITS APP, V22
[2]  
Ladyzhenskaya O., 1968, LINEAR QUASILINEAR E, DOI DOI 10.1090/MMONO/023
[3]  
Lions J. L., 1972, NON HOMOGENEOUS BOUN
[4]  
Mujakovic N., 1998, GLAS MAT, V33, P71
[5]  
Mujakovic N., 1998, GLAS MAT, V33, P199
[6]  
MUJAKOVIC N, MATH INEQUA IN PRESS
[7]  
Mujakovic N., 2007, ANN U FERRARA, V53, P361
[8]  
Mujakovie N., 2001, Rad. Mat., V10, P181
[9]  
Rozdestvenskii B.L., 1983, Translations of Mathematical Monographs