DeepTransport: Learning Spatial-Temporal Dependency for Traffic Condition Forecasting

被引:0
|
作者
Cheng, Xingyi [1 ]
Zhang, Ruiqing [1 ]
Zhou, Jie [1 ]
Xu, Wei [1 ]
机构
[1] Inst Deep Learning Baidu Res, Beijing, Peoples R China
来源
2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2018年
关键词
traffic prediction; spatial-temporal; deep learning; attention mechinism; FLOW PREDICTION; NETWORK; MULTIVARIATE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting traffic conditions has been recently explored as a way to relieve traffic congestion. Several pioneering approaches have been proposed based on traffic observations of the target location as well as its adjacent regions, but they obtain somewhat limited accuracy due to lack of mining road topology. To address the effect attenuation problem, we propose to take account of the traffic of surrounding locations. We propose an end-to-end framework called DeepTransport, in which Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) are utilized to obtain spatial-temporal traffic information within a transport network topology. In addition, attention mechanism is introduced to align spatial and temporal information. Moreover, we constructed and released a real-world large traffic condition dataset with 5-minute resolution. Our experiments on this dataset demonstrate our method captures the complex relationship in both temporal and spatial domain. It significantly outperforms traditional statistical methods and a state-of-the-art deep learning method.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
    Bui, Khac-Hoai Nam
    Cho, Jiho
    Yi, Hongsuk
    APPLIED INTELLIGENCE, 2022, 52 (03) : 2763 - 2774
  • [42] FEST: A Multi-way Framework with Enhanced Spatial-Temporal Modeling for Traffic Forecasting
    Li, Yilin
    Guo, Tszyin
    Qiao, Ying
    Bo, Zitong
    Wang, Hongan
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 599 - 607
  • [43] Efficient Mobile Cellular Traffic Forecasting using Spatial-Temporal Graph Attention Networks
    Mortazavi, SeyedMohammad
    Sousa, Elvino
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [44] One Size Fits All: A Unified Traffic Predictor for Capturing the Essential Spatial-Temporal Dependency
    Luo, Guiyang
    Zhang, Hui
    Yuan, Quan
    Li, Jinglin
    Wang, Wendong
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11317 - 11331
  • [45] A Spatial-Temporal Gated Hypergraph Convolution Network for Traffic Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Chen, Yanjiao
    Li, Jianxin
    Liu, Qin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 9546 - 9559
  • [46] Traffic Prediction on Communication Network based on Spatial-Temporal Information
    Ma, Yue
    Peng, Bo
    Ma, Mingjun
    Wang, Yifei
    Xia, Ding
    2020 22ND INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT): DIGITAL SECURITY GLOBAL AGENDA FOR SAFE SOCIETY!, 2020, : 304 - 309
  • [47] A Deep Learning Framework with Spatial-Temporal Attention Mechanism for Cellular Traffic Prediction
    Gao, Yun
    Wei, Xin
    Zhou, Liang
    Lv, Haibing
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [48] Traffic Prediction Using Attentional Spatial-Temporal Deep Learning with Accident Embedding
    Liyong, Wanida
    Vateekul, Peerapon
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2019), 2019, : 98 - 103
  • [49] Adaptive Multi-receptive Field Spatial-Temporal Graph Convolutional Network for Traffic Forecasting
    Wang, Xing
    Zhao, Juan
    Zhu, Lin
    Zhou, Xu
    Li, Zhao
    Feng, Junlan
    Deng, Chao
    Zhang, Yong
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [50] Deep Spatial-Temporal 3D Convolutional Neural Networks for Traffic Data Forecasting
    Guo, Shengnan
    Lin, Youfang
    Li, Shijie
    Chen, Zhaoming
    Wan, Huaiyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (10) : 3913 - 3926