Local convex directions for Hurwitz stable polynomials

被引:0
作者
Özgüler, AB [1 ]
Saadaoui, K [1 ]
机构
[1] Bilkent Univ, Dept Elect & Elect Engn, TR-06533 Bilkent, Turkey
关键词
convex directions; polynomials; robust control; stability;
D O I
10.1109/9.989156
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new condition for a polynomial p(s) to be a local convex direction for a Hurwitz stable polynomial q(s) is derived. The condition is in terms of polynomials associated with the even and odd parts of p(s) and q(s), and constitutes a generalization of Rantzer's phase-growth condition for global convex directions. It is used to determine convex directions for certain subsets of Hurwitz stable polynomials.
引用
收藏
页码:532 / 537
页数:6
相关论文
共 16 条
[1]  
BARMISH BR, 1944, NEW TOOLS ROBUSTNESS
[2]  
Bartlett AC., 1988, MATH CONTROL SIGNALS, V1, P61, DOI [DOI 10.1007/BF02551236, 10.1007/BF02551236]
[3]  
Bhattacharyya S., 1995, ROBUST CONTROL PARAM
[4]  
Bialas S., 1985, B POLISH ACAD SCI, V33, P473
[5]   ARGUMENT CONDITIONS FOR HURWITZ AND SCHUR POLYNOMIALS FROM NETWORK THEORY [J].
BOSE, NK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (02) :345-346
[6]   AN ALTERNATIVE PROOF OF KHARITONOV THEOREM [J].
CHAPELLAT, H ;
BHATTACHARYYA, SP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (04) :448-450
[7]  
Gantmacher F. R., 1959, THEORY MATRICES, V2
[8]   Phase properties of Hurwitz polynomials [J].
Keel, LH ;
Bhattacharyya, SP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (05) :733-734
[9]  
Kharitonov VL, 1997, AUTOMAT REM CONTR+, V58, P394
[10]  
MANSOUR M, 1992, CONTROL DYNAMICS SYS, V51, P79