On rationality of moduli spaces of vector bundles on real Hirzebruch surfaces

被引:1
|
作者
Biswas, Indranil [1 ]
Sebastian, Ronnie [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Inst Math Sci, Madras 600113, Tamil Nadu, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2013年 / 123卷 / 02期
关键词
Real variety; moduli space; rationality; Hirzebruch surface;
D O I
10.1007/s12044-013-0118-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a real form of a Hirzebruch surface. Let M-H (r, c(1), c(2)) be the moduli space of vector bundles on X. Under some numerical conditions on r, c(1) and c(2), we identify those M-H(r, c(1), c(2)) that are rational.
引用
收藏
页码:213 / 223
页数:11
相关论文
共 50 条
  • [31] Poincare polynomial of the moduli spaces of parabolic bundles
    Holla, YI
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2000, 110 (03): : 233 - 261
  • [32] Some results on the moduli spaces of quiver bundles
    Luis Álvarez-Cónsul
    Geometriae Dedicata, 2009, 139
  • [33] Poincaré polynomial of the moduli spaces of parabolic bundles
    Yogish I. Holla
    Proceedings Mathematical Sciences, 2000, 110 : 233 - 261
  • [34] Some results on the moduli spaces of quiver bundles
    Alvarez-Consul, Luis
    GEOMETRIAE DEDICATA, 2009, 139 (01) : 99 - 120
  • [35] Kahler structure on moduli spaces of principal bundles
    Biswas, Indranil
    Schumacher, Georg
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (02) : 136 - 146
  • [36] Moduli space of parabolic vector bundles on a curve
    Usha N. Bhosle
    Indranil Biswas
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2012, 53 (2): : 437 - 449
  • [37] Moduli space of parabolic vector bundles on a curve
    Bhosle, Usha N.
    Biswas, Indranil
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2012, 53 (02): : 437 - 449
  • [38] Brauer group of the moduli spaces of stable vector bundles of fixed determinant over a smooth curve
    Biswas, Indranil
    Sengupta, Tathagata
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 144 : 55 - 63
  • [39] FROBENIUS STRATIFICATION OF MODULI SPACES OF RANK 3 VECTOR BUNDLES IN POSITIVE CHARACTERISTIC 3, I
    Li, Lingguang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (08) : 5693 - 5711
  • [40] ON A MORPHISM OF COMPACTIFICATIONS OF MODULI SCHEME OF VECTOR BUNDLES
    Timofeeva, N., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 577 - 591