Laminin-211 in skeletal muscle function

被引:107
作者
Holmberg, Johan [1 ]
Durbeej, Madeleine [1 ]
机构
[1] Lund Univ, Dept Expt Med Sci, Muscle Biol Unit, Lund, Sweden
基金
瑞典研究理事会;
关键词
basement membrane; dystroglycan; integrin; laminin; muscle force; sarcolemma; skeletal muscle; CONGENITAL MUSCULAR-DYSTROPHY; CHAIN-DEFICIENT MICE; MDX MOUSE MODEL; ALPHA-2; CHAIN; EXTRACELLULAR-MATRIX; BASEMENT-MEMBRANE; ALPHA-7-BETA-1; INTEGRIN; MUTANT MICE; LAMA2; GENE; GLYCOPROTEIN COMPLEX;
D O I
10.4161/cam.22618
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle's main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function.
引用
收藏
页码:111 / 121
页数:11
相关论文
共 113 条
[1]   Mild congenital muscular dystrophy in two patients with an internally deleted laminin alpha 2-chain [J].
Allamand, V ;
Sunada, Y ;
Salih, MAM ;
Straub, V ;
Ozo, CO ;
AlTuraiki, MHS ;
Akbar, M ;
Kolo, T ;
Colognato, H ;
Zhang, X ;
Sorokin, LM ;
Yurchenco, PD ;
Tryggvason, K ;
Campbell, KP .
HUMAN MOLECULAR GENETICS, 1997, 6 (05) :747-752
[2]   Merosin-deficient congenital muscular dystrophy, autosomal recessive (MDC1A, MIM#156225, LAMA2 gene coding for α2 chain of laminin) [J].
Allamand, V ;
Guicheney, P .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2002, 10 (02) :91-94
[3]   Dystroglycan: from biosynthesis to pathogenesis of human disease [J].
Barresi, R ;
Campbell, KP .
JOURNAL OF CELL SCIENCE, 2006, 119 (02) :199-207
[4]   Overexpression of mini-agrin in skeletal muscle increases muscle integrity and regenerative capacity in laminin-α2-deficient mice [J].
Bentzinger, CF ;
Barzaghi, P ;
Lin, S ;
Ruegg, MA .
FASEB JOURNAL, 2005, 19 (08) :934-942
[5]   New insights into the roles of agrin [J].
Bezakova, G ;
Ruegg, MA .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (04) :295-308
[6]   Tissue engineering of functional skeletal muscle: challenges and recent advances [J].
Bian, Weining ;
Bursac, Nenad .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2008, 27 (05) :109-113
[7]   Lateral force transmission across costameres in skeletal muscle [J].
Bloch, RJ ;
Gonzalez-Serratos, H .
EXERCISE AND SPORT SCIENCES REVIEWS, 2003, 31 (02) :73-78
[8]   Activation of AKT signaling promotes cell growth and survival in α7β1 integrin-mediated alleviation of muscular dystrophy [J].
Boppart, Marni D. ;
Burkin, Dean J. ;
Kaufman, Stephen J. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2011, 1812 (04) :439-446
[9]   α7β1-integrin regulates mechanotransduction and prevents skeletal muscle injury [J].
Boppart, MD ;
Burkin, DJ ;
Kaufman, SJ .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2006, 290 (06) :C1660-C1665
[10]   The α7β1 integrin in muscle development and disease [J].
Burkin, DJ ;
Kaufman, SJ .
CELL AND TISSUE RESEARCH, 1999, 296 (01) :183-190