Quadratic solitons for negative effective second-harmonic diffraction as nonlocal solitons with periodic nonlocal response function

被引:34
作者
Esbensen, B. K. [1 ]
Bache, M. [1 ]
Krolikowski, W. [2 ]
Bang, O. [1 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DTU Foton, DK-2800 Lyngby, Denmark
[2] Australian Natl Univ, Res Sch Phys & Engn, Laser Phys Ctr, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 02期
关键词
SPATIAL SOLITONS; MODULATIONAL INSTABILITY; BEAMS; PROPAGATION; COMPRESSION; DYNAMICS; PHYSICS;
D O I
10.1103/PhysRevA.86.023849
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions.
引用
收藏
页数:10
相关论文
共 43 条
[31]   Dynamics of Bose-Einstein condensates in optical lattices [J].
Morsch, O ;
Oberthaler, M .
REVIEWS OF MODERN PHYSICS, 2006, 78 (01) :179-215
[32]   Quadratic solitons as nonlocal solitons -: art. no. 036614 [J].
Nikolov, NI ;
Neshev, D ;
Bang, O ;
Królikowski, WZ .
PHYSICAL REVIEW E, 2003, 68 (03) :5
[33]   ELECTROMAGNETIC TRAPS FOR CHARGED AND NEUTRAL PARTICLES [J].
PAUL, W .
REVIEWS OF MODERN PHYSICS, 1990, 62 (03) :531-540
[34]   Theory of nonlocal soliton interaction in nematic liquid crystals -: art. no. 066611 [J].
Rasmussen, PD ;
Bang, O ;
Królikowski, W .
PHYSICAL REVIEW E, 2005, 72 (06)
[35]   Dynamics of optical spatial solitons near the interface between two quadratically nonlinear media [J].
Shadrivov, IV ;
Zharov, AA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (03) :596-602
[36]   SELF-GUIDED BEAMS IN A DIFFRACTIVE CHI((2)) MEDIUM - VARIATIONAL APPROACH [J].
STEBLINA, VV ;
KIVSHAR, YS ;
LISAK, M ;
MALOMED, BA .
OPTICS COMMUNICATIONS, 1995, 118 (3-4) :345-352
[37]   chi((2)) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons [J].
Stegeman, GI ;
Hagan, DJ ;
Torner, L .
OPTICAL AND QUANTUM ELECTRONICS, 1996, 28 (12) :1691-1740
[38]   Approximate solutions and scaling transformations for quadratic solitons [J].
Sukhorukov, AA .
PHYSICAL REVIEW E, 2000, 61 (04) :4530-4539
[40]   Modulational instability in the nonlocal χ(2)-model [J].
Wyller, John ;
Krolikowski, Wieslaw Z. ;
Bang, Ole ;
Petersen, Dan Erik ;
Rasmussen, Jens Juul .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 227 (01) :8-25