Improving Inertial Sensor-Based Activity Recognition in Neurological Populations

被引:6
|
作者
Celik, Yunus [1 ]
Aslan, M. Fatih [2 ]
Sabanci, Kadir [2 ]
Stuart, Sam [3 ]
Woo, Wai Lok [1 ]
Godfrey, Alan [1 ]
机构
[1] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NE1 8ST, England
[2] Karamanoglu Mehmetbey Univ, Dept Elect & Elect Engn, TR-70100 Karaman, Turkey
[3] Northumbria Univ, Dept Sport Exercise & Rehabil, Newcastle Upon Tyne NE1 8ST, England
关键词
human activity recognition; inertial measurement units; data augmentation; convolutional neural networks;
D O I
10.3390/s22249891
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in neurological populations due to, e.g., impaired patient mobility to perform many daily activities. This study proposes a novel framework to overcome the challenge of creating rich and diverse datasets for HAR in neurological populations. The framework produces images from numerical inertial time-series data (initial state) and then artificially augments the number of produced images (enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) architectures by utilizing image input. In addition, CNN enables transfer learning which enables limited datasets to benefit from models that are trained with big data. Initially, two benchmarked public datasets were used to verify the framework. Afterward, the approach was tested in limited local datasets of healthy subjects (HS), Parkinson's disease (PD) population, and stroke survivors (SS) to further investigate validity. The experimental results show that when data augmentation is applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, respectively, compared to the no data augmentation state. In addition, data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited local datasets. Findings also suggest that CNN architectures that have a small number of deep layers can achieve high accuracy. The implication of this study has the potential to reduce the burden on participants and researchers where limited datasets are accrued.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Inertial Sensor-based Human Activity Recognition Using Hybrid Deep Neural Networks
    Lei, Zhanzhi
    Xie, Jinfeng
    Xiao, Liang
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [2] ConvBoost: Boosting ConvNets for Sensor-based Activity Recognition
    Shao, Shuai
    Guan, Yu
    Zhai, Bing
    Missier, Paolo
    Plotz, Thomas
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (02):
  • [3] Enhancing inertial sensor-based sports activity recognition through reduction of the signals and deep learning
    Grzegorz, Pajak
    Justyna, Patalas-Maliszewska
    Pascal, Krutz
    Matthias, Rehm
    Iwona, Pajak
    Holger, Schlegel
    Martin, Dix
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
  • [4] A survey on unsupervised learning for wearable sensor-based activity recognition
    Ige, Ayokunle Olalekan
    Noor, Mohd Halim Mohd
    APPLIED SOFT COMPUTING, 2022, 127
  • [5] SenseMLP: a parallel MLP architecture for sensor-based human activity recognition
    Li, Weilin
    Guo, Jiaming
    Wu, Hong
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [6] Sensor-based Activity Recognition using Deep Learning: A Comparative Study
    Trabelsi, Imen
    Francoise, Jules
    Bellik, Yacine
    PROCEEDINGS OF 2022 8TH INTERNATIONAL CONFERENCE ON MOVEMENT AND COMPUTING, MOCO 2022, 2022,
  • [7] Unsupervised Diffusion Model for Sensor-based Human Activity Recognition
    Zuo, Si
    Rey, Vitor Fortes
    Suh, Sungho
    Sigg, Stephan
    Lukowicz, Paul
    ADJUNCT PROCEEDINGS OF THE 2023 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING & THE 2023 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTING, UBICOMP/ISWC 2023 ADJUNCT, 2023, : 205 - 205
  • [8] A Pattern Mining Approach to Sensor-Based Human Activity Recognition
    Gu, Tao
    Wang, Liang
    Wu, Zhanqing
    Tao, Xianping
    Lu, Jian
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (09) : 1359 - 1372
  • [9] Wearable Sensor-Based Human Activity Recognition with Transformer Model
    Dirgova Luptakova, Iveta
    Kubovcik, Martin
    Pospichal, Jiri
    SENSORS, 2022, 22 (05)
  • [10] Invariant Feature Learning for Sensor-Based Human Activity Recognition
    Hao, Yujiao
    Zheng, Rong
    Wang, Boyu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (11) : 4013 - 4024