Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li-Air Batteries

被引:30
作者
Mekonnen, Yedilfana S. [1 ]
Garcia-Lastra, Juan M. [1 ]
Hummelshoj, Jens S. [4 ]
Jin, Chengjun [2 ,3 ]
Vegge, Tejs [1 ]
机构
[1] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[4] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
关键词
LI-O-2; BATTERIES; LITHIUM PEROXIDE; ELECTRONIC-STRUCTURE; LI2O2; LI2CO3; CARBONATE;
D O I
10.1021/acs.jpcc.5b04432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The formation and oxidation of the main discharge product in nonaqueous secondary Li-O-2 batteries, that is, Li2O2, has been studied intensively, but less attention has been given to the formation of cathode electrolyte interfaces, which can significantly influence the performance of the Li-O-2 battery. Here we apply density functional theory with the Hubbard U correction (DFT+U) and nonequilibrium Green's function (NEGF) methods to investigate the role of Li2O2@Li2CO3 interface layers on the ionic and electronic transport properties at the oxygen electrode. We show that, for example, lithium vacancies accumulate at the peroxide part of the interface during charge, reducing the coherent electron transport by two to three orders of magnitude compared with pristine Li2O2. During discharge, Li2O2@Li2CO3 interfaces may, however, provide an alternative in-plane channel for fast electron polaron hopping that could improve the electronic conductivity and ultimately increase the practical capacity in nonaqueous Li-O-2 batteries.
引用
收藏
页码:18066 / 18073
页数:8
相关论文
共 38 条
[1]   Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling [J].
Albertus, Paul ;
Girishkumar, G. ;
McCloskey, Bryan ;
Sanchez-Carrera, Roel S. ;
Kozinsky, Boris ;
Christensen, Jake ;
Luntz, A. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A343-A351
[2]  
[Anonymous], AT TOOLKIT VERS 2014
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   An object-oriented scripting interface to a legacy electronic structure code [J].
Bahn, SR ;
Jacobsen, KW .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :56-66
[5]   A critical review on lithium-air battery electrolytes [J].
Balaish, Moran ;
Kraytsberg, Alexander ;
Ein-Eli, Yair .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (07) :2801-2822
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[8]   Ab initio quantum-mechanical modeling and (110) surfaces of zabuyelite (Li2CO3) [J].
Bruno, Marco ;
Prencipe, Mauro .
SURFACE SCIENCE, 2007, 601 (14) :3012-3019
[9]   The role of transition metal interfaces on the electronic transport in lithium-air batteries [J].
Chen, Jingzhe ;
Hummelshoj, Jens S. ;
Thygesen, Kristian S. ;
Myrdal, Jon S. G. ;
Norskov, Jens K. ;
Vegge, Tejs .
CATALYSIS TODAY, 2011, 165 (01) :2-9
[10]   On the structure of lithium peroxide, Li2O2 [J].
Cota, LG ;
de la Mora, P .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2005, 61 :133-136