Luminescence thermometry for in situ temperature measurements in microfluidic devices

被引:81
作者
Geitenbeek, Robin G. [1 ]
Vollenbroek, Jeroen C. [2 ]
Weijgertze, Hannah M. H. [1 ]
Tregouet, Corentin B. M. [2 ,3 ]
Nieuwelink, Anne-Eva [4 ]
Kennedy, Chris L. [5 ]
Weckhuysen, Bert M. [4 ]
Lohse, Detlef [3 ]
van Blaaderen, Alfons [5 ]
van den Berg, Albert [2 ]
Odijk, Mathieu [2 ]
Meijerink, Andries [1 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Condensed Matter & Interfaces, Princetonpl 1, NL-3584 CC Utrecht, Netherlands
[2] Univ Twente, MESA Inst Nanotechnol, Lab On A Chip Grp, BIOS, POB 217, Enschede, Netherlands
[3] Univ Twente, MESA Inst Nanotechnol, Phys Fluids, POB 217, Enschede, Netherlands
[4] Univ Utrecht, Debye Inst Nanomat Sci, Inorgan Chem & Catalysis, Princetonpl 1, NL-3584 CC Utrecht, Netherlands
[5] Univ Utrecht, Debye Inst Nanomat Sci, Soft Condensed Matter, Princetonpl 1, NL-3584 CC Utrecht, Netherlands
关键词
UP-CONVERSION; CAPILLARY-ELECTROPHORESIS; QUANTUM DOTS; DNA ANALYSIS; GRADIENT; SYSTEMS; NANOPARTICLES; MICROREACTOR; EMISSION; SHAPE;
D O I
10.1039/c8lc01292j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Temperature control for lab-on-a-chip devices has resulted in the broad applicability of microfluidics to, e.g., polymerase chain reaction (PCR), temperature gradient focusing for electrophoresis, and colloidal particle synthesis. However, currently temperature sensors on microfluidic chips either probe temperatures outside the channel (resistance temperature detector, RTD) or are limited in both the temperature range and sensitivity in the case of organic dyes. In this work, we introduce ratiometric bandshape luminescence thermometry in which thermally coupled levels of Er3+ in NaYF4 nanoparticles are used as a promising method for in situ temperature mapping in microfluidic systems. The results, obtained with three types of microfluidic devices, demonstrate that temperature can be monitored inside a microfluidic channel accurately (0.34 degrees C) up to at least 120 degrees C with a spot size of ca. 1 mm using simple fiber optics. Higher spatial resolution can be realized by combining luminescence thermometry with confocal microscopy, resulting in a spot size of ca. 9 m. Further improvement is anticipated to enhance the spatial resolution and allow for 3D temperature profiling.
引用
收藏
页码:1236 / 1246
页数:11
相关论文
共 51 条
[1]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev-bioeng-071811-150124, 10.1146/annurev.bioeng-071811-150124]
[2]   Temperature alternation by an on-chip microheater to reveal enzymatic activity of β-galactosidase at high temperatures [J].
Arata, HF ;
Rondelez, Y ;
Noji, H ;
Fujita, H .
ANALYTICAL CHEMISTRY, 2005, 77 (15) :4810-4814
[3]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[4]   Thermometry at the nanoscale [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
NANOSCALE, 2012, 4 (16) :4799-4829
[5]   An integrated nanoliter DNA analysis device [J].
Burns, MA ;
Johnson, BN ;
Brahmasandra, SN ;
Handique, K ;
Webster, JR ;
Krishnan, M ;
Sammarco, TS ;
Man, PM ;
Jones, D ;
Heldsinger, D ;
Mastrangelo, CH ;
Burke, DT .
SCIENCE, 1998, 282 (5388) :484-487
[6]   High-temperature microwave processing of materials [J].
Bykov, YV ;
Rybakov, KI ;
Semenov, VE .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (13) :R55-R75
[7]   Fluorescence ratio thermometry in a microfluidic dual-beam laser trap [J].
Ebert, Susanne ;
Travis, Kort ;
Lincoln, Bryan ;
Guck, Jochen .
OPTICS EXPRESS, 2007, 15 (23) :15493-15499
[8]   Microwave power absorption in low-reflectance, complex, lossy transmission lines [J].
Geist, Jon ;
Shah, Jayna J. ;
Rao, Mulpuri V. ;
Gaitan, Michael .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2007, 112 (04) :177-189
[9]   NaYF4:Er3+,Yb3+/SiO2 Core/Shell Upconverting Nanocrystals for Luminescence Thermometry up to 900 K [J].
Geitenbeek, Robin G. ;
Prins, P. Tim ;
Albrecht, Wiebke ;
van Blaaderen, Alfons ;
Weckhuysen, Bert M. ;
Meijerink, Andries .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (06) :3503-3510
[10]   Chemical and physical processes for integrated temperature control in microfluidic devices [J].
Guijt, RM ;
Dodge, A ;
van Dedem, GWK ;
de Rooij, NF ;
Verpoorte, E .
LAB ON A CHIP, 2003, 3 (01) :1-4