WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY

被引:0
作者
Zhan, Huashui [1 ]
Wen, Jie [2 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Fujian, Peoples R China
[2] Jimei Univ, Sch Sci, Xiamen 361021, Fujian, Peoples R China
关键词
Electrorheological fluid equation; boundary degeneracy; Holder's inequality; local stability; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the electrorheological fluid equation ut = div(rho(alpha)vertical bar del u vertical bar(p(x)-2)del v), where rho(x) = dist(x, partial derivative Omega) is the distance from the boundary, p(x) is an element of C-1 ((Omega) over bar), and p(-) = min(x is an element of(Omega) over bar)p(x) > 1 We show how the degeneracy of rho(alpha) on the boundary affects the well-posedness of the weak solutions. In particular, the local stability of the weak solutions is established without any boundary value condition.
引用
收藏
页数:15
相关论文
共 17 条
[11]  
Ruzicka M, 2000, LECT NOTES MATH, V1748, P1
[12]  
Taylor Michael E., 1999, APPL MATH SCI
[13]   Holder regularity for the general parabolic p(x, t)-Laplacian equations [J].
Yao, Fengping .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (01) :105-119
[14]   Properties of the boundary flux of a singular diffusion process [J].
Yin, JX ;
Wang, CP .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2004, 25 (02) :175-182
[15]  
Zhan HS, 2015, BOUND VALUE PROBL, DOI 10.1186/s13661-015-0377-6
[16]   Global gradient estimates for the parabolic p(x, t)-Laplacian equation [J].
Zhang, Chao ;
Zhou, Shulin ;
Xue, Xiaoping .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 105 :86-101
[17]  
Zhikov VV., 2004, ZAP NAUCHN SEM S PET, V310, P67