WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY

被引:0
作者
Zhan, Huashui [1 ]
Wen, Jie [2 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Fujian, Peoples R China
[2] Jimei Univ, Sch Sci, Xiamen 361021, Fujian, Peoples R China
关键词
Electrorheological fluid equation; boundary degeneracy; Holder's inequality; local stability; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the electrorheological fluid equation ut = div(rho(alpha)vertical bar del u vertical bar(p(x)-2)del v), where rho(x) = dist(x, partial derivative Omega) is the distance from the boundary, p(x) is an element of C-1 ((Omega) over bar), and p(-) = min(x is an element of(Omega) over bar)p(x) > 1 We show how the degeneracy of rho(alpha) on the boundary affects the well-posedness of the weak solutions. In particular, the local stability of the weak solutions is established without any boundary value condition.
引用
收藏
页数:15
相关论文
共 17 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]  
[Anonymous], 2016, ELECT J DIFFERENTIAL
[3]   Parabolic equations with double variable nonlinearities [J].
Antontsev, S. ;
Shmarev, S. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (10) :2018-2032
[4]   ANISOTROPIC PARABOLIC EQUATIONS WITH VARIABLE NONLINEARITY [J].
Antontsev, S. ;
Shmarev, S. .
PUBLICACIONS MATEMATIQUES, 2009, 53 (02) :355-399
[5]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[6]  
Gu L K., 2002, 2 ORDER PARABOLIC PA
[7]   Global bifurcation for a class of degenerate elliptic equations with variable exponents [J].
Kim, Yun-Ho ;
Wang, Lihe ;
Zhang, Chao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (02) :624-637
[8]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[9]   Existence of solutions to an initial Dirichlet problem of evolutional p(x)-Laplace equations [J].
Lian, Songzhe ;
Gao, Wenjie ;
Yuan, Hongjun ;
Cao, Chunling .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (03) :377-399
[10]   Existence of solutions of the parabolic variational inequality with variable exponent of nonlinearity [J].
Mashiyev, R. A. ;
Buhrii, O. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) :450-463