BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY

被引:49
|
作者
Rivoirard, Vincent [1 ]
Rousseau, Judith [1 ]
机构
[1] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
来源
ANNALS OF STATISTICS | 2012年 / 40卷 / 03期
关键词
Bayesian nonparametric; rates of convergence; Bernstein-von Mises; adaptive estimation; CONVERGENCE-RATES; POSTERIOR DISTRIBUTIONS; ASYMPTOTIC NORMALITY;
D O I
10.1214/12-AOS1004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the asymptotic posterior distribution of linear functionals of the density by deriving general conditions to obtain a semiparametric version of the Bernstein-von Mises theorem. The special case of the cumulative distributive function, evaluated at a specific point, is widely considered. In particular, we show that for infinite-dimensional exponential families, under quite general assumptions, the asymptotic posterior distribution of the functional can be either Gaussian or a mixture of Gaussian distributions with different centering points. This illustrates the positive, but also the negative, phenomena that can occur in the study of Bernstein-von Mises results.
引用
收藏
页码:1489 / 1523
页数:35
相关论文
共 50 条