BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY

被引:49
|
作者
Rivoirard, Vincent [1 ]
Rousseau, Judith [1 ]
机构
[1] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
来源
ANNALS OF STATISTICS | 2012年 / 40卷 / 03期
关键词
Bayesian nonparametric; rates of convergence; Bernstein-von Mises; adaptive estimation; CONVERGENCE-RATES; POSTERIOR DISTRIBUTIONS; ASYMPTOTIC NORMALITY;
D O I
10.1214/12-AOS1004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the asymptotic posterior distribution of linear functionals of the density by deriving general conditions to obtain a semiparametric version of the Bernstein-von Mises theorem. The special case of the cumulative distributive function, evaluated at a specific point, is widely considered. In particular, we show that for infinite-dimensional exponential families, under quite general assumptions, the asymptotic posterior distribution of the functional can be either Gaussian or a mixture of Gaussian distributions with different centering points. This illustrates the positive, but also the negative, phenomena that can occur in the study of Bernstein-von Mises results.
引用
收藏
页码:1489 / 1523
页数:35
相关论文
共 50 条
  • [31] NONPARAMETRIC BERNSTEIN-VON MISES THEOREMS IN GAUSSIAN WHITE NOISE
    Castillo, Ismael
    Nickl, Richard
    ANNALS OF STATISTICS, 2013, 41 (04): : 1999 - 2028
  • [32] ADAPTIVE BERNSTEIN-VON MISES THEOREMS IN GAUSSIAN WHITE NOISE
    Ray, Kolyan
    ANNALS OF STATISTICS, 2017, 45 (06): : 2511 - 2536
  • [33] BERNSTEIN-VON MISES THEOREMS FOR GAUSSIAN REGRESSION WITH INCREASING NUMBER OF REGRESSORS
    Bontemps, Dominique
    ANNALS OF STATISTICS, 2011, 39 (05): : 2557 - 2584
  • [34] Bernstein-von Mises theorems for statistical inverse problems I: Schrodinger equation
    Nickl, Richard
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (08) : 2697 - 2750
  • [35] Critical dimension in the semiparametric Bernstein—von Mises theorem
    Maxim E. Panov
    Vladimir G. Spokoiny
    Proceedings of the Steklov Institute of Mathematics, 2014, 287 : 232 - 255
  • [36] The Bernstein-Von-Mises theorem under misspecification
    Kleijn, B. J. K.
    van der Vaart, A. W.
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 354 - 381
  • [37] Bernstein-von Mises theorems for statistical inverse problems II: compound Poisson processes
    Nickl, Richard
    Sohl, Jakob
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 3513 - 3571
  • [38] Finite Sample Bernstein - von Mises Theorem for Semiparametric Problems
    Panov, Maxim
    Spokoiny, Vladimir
    BAYESIAN ANALYSIS, 2015, 10 (03): : 665 - 710
  • [39] A semiparametric Bernstein–von Mises theorem for Gaussian process priors
    Ismaël Castillo
    Probability Theory and Related Fields, 2012, 152 : 53 - 99
  • [40] DEGENERATE CONVERGENCE AND VON MISES-BERNSTEIN THEOREM FOR POSTERIOR DISTRIBUTIONS
    BORWANKE.JD
    ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (03): : 954 - &