BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY

被引:49
|
作者
Rivoirard, Vincent [1 ]
Rousseau, Judith [1 ]
机构
[1] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
来源
ANNALS OF STATISTICS | 2012年 / 40卷 / 03期
关键词
Bayesian nonparametric; rates of convergence; Bernstein-von Mises; adaptive estimation; CONVERGENCE-RATES; POSTERIOR DISTRIBUTIONS; ASYMPTOTIC NORMALITY;
D O I
10.1214/12-AOS1004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the asymptotic posterior distribution of linear functionals of the density by deriving general conditions to obtain a semiparametric version of the Bernstein-von Mises theorem. The special case of the cumulative distributive function, evaluated at a specific point, is widely considered. In particular, we show that for infinite-dimensional exponential families, under quite general assumptions, the asymptotic posterior distribution of the functional can be either Gaussian or a mixture of Gaussian distributions with different centering points. This illustrates the positive, but also the negative, phenomena that can occur in the study of Bernstein-von Mises results.
引用
收藏
页码:1489 / 1523
页数:35
相关论文
共 50 条
  • [21] Bernstein-von Mises Theorems and Uncertainty Quantification for Linear Inverse Problems
    Giordano, Matteo
    Kekkonen, Hanne
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 342 - 373
  • [22] The Bernstein-von Mises theorem and spectral asymptotics of Bayes estimators for parabolic SPDES
    Bishwal, JPN
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 : 287 - 298
  • [23] Semiparametric Bernstein-von Mises theorem and bias, illustrated with Gaussian process priors
    Castillo, Ismael
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2012, 74 (02): : 194 - 221
  • [24] On the Rate of Convergence in the Bernstein-von Mises Theorem for M/M/1 Queue
    Singh, Saroja Kumar
    Acharya, Sarat Kumar
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2021, 22 (01) : 181 - 200
  • [25] High-dimensional Bernstein-von Mises theorem for the Diaconis-Ylvisaker prior
    Jin, Xin
    Bhattacharya, Anirban
    Ghosh, Riddhi Pratim
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 200
  • [26] Semiparametric Bernstein-von Mises for the error standard deviation
    de Jonge, Rene
    van Zanten, Harry
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 217 - 243
  • [27] ON THE BERNSTEIN-VON MISES PHENOMENON FOR NONPARAMETRIC BAYES PROCEDURES
    Castillo, Ismael
    Nickl, Richard
    ANNALS OF STATISTICS, 2014, 42 (05): : 1941 - 1969
  • [28] THE SEMI-PARAMETRIC BERNSTEIN-VON MISES THEOREM FOR REGRESSION MODELS WITH SYMMETRIC ERRORS
    Chae, Minwoo
    Kim, Yongdai
    Kleijn, Bas J. K.
    STATISTICA SINICA, 2019, 29 (03) : 1465 - 1487
  • [29] Large-Sample Theory for Inferential Models: A Possibilistic Bernstein-von Mises Theorem
    Martin, Ryan
    Williams, Jonathan P.
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS, BELIEF 2024, 2024, 14909 : 111 - 120
  • [30] On the Bernstein-von Mises phenomenon in the Gaussian white noise model
    Leahu, Haralambie
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 373 - 404