EFFICIENT GREEDY ALGORITHMS FOR HIGH-DIMENSIONAL PARAMETER SPACES WITH APPLICATIONS TO EMPIRICAL INTERPOLATION AND REDUCED BASIS METHODS

被引:81
作者
Hesthaven, Jan S. [1 ]
Stamm, Benjamin [2 ,3 ]
Zhang, Shun [4 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] CNRS, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
[3] Univ Paris 06, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
[4] City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2014年 / 48卷 / 01期
关键词
Greedy algorithm; reduced basis method; empirical interpolation method; POSTERIORI ERROR ESTIMATION; BASIS APPROXIMATION; LOWER BOUNDS; STABILITY; CONVERGENCE; EQUATIONS;
D O I
10.1051/m2an/2013100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose two new algorithms to improve greedy sampling of high-dimensional functions. While the techniques have a substantial degree of generality, we frame the discussion in the context of methods for empirical interpolation and the development of reduced basis techniques for high-dimensional parametrized functions. The first algorithm, based on a saturation assumption of the error in the greedy algorithm, is shown to result in a significant reduction of the workload over the standard greedy algorithm. In a further improved approach, this is combined with an algorithm in which the train set for the greedy approach is adaptively sparsified and enriched. A safety check step is added at the end of the algorithm to certify the quality of the sampling. Both these techniques are applicable to high-dimensional problems and we shall demonstrate their performance on a number of numerical examples.
引用
收藏
页码:259 / 283
页数:25
相关论文
共 30 条
[1]  
[Anonymous], MIT PAPPALA IN PRESS
[2]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[3]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[4]   CONVERGENCE RATES FOR GREEDY ALGORITHMS IN REDUCED BASIS METHODS [J].
Binev, Peter ;
Cohen, Albert ;
Dahmen, Wolfgang ;
Devore, Ronald ;
Petrova, Guergana ;
Wojtaszczyk, Przemyslaw .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) :1457-1472
[5]   A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD [J].
Buffa, Annalisa ;
Maday, Yvon ;
Patera, Anthony T. ;
Prud'homme, Christophe ;
Turinici, Gabriel .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (03) :595-603
[6]   MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE [J].
Bui-Thanh, T. ;
Willcox, K. ;
Ghattas, O. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06) :3270-3288
[7]  
Bui-Thanh T, 2007, Model-constrained Optimization Methods for Reduction of Parameterized Large Scale Systems
[8]   CERTIFIED REDUCED BASIS METHODS AND OUTPUT BOUNDS FOR THE HARMONIC MAXWELL'S EQUATIONS [J].
Chen, Yanlai ;
Hesthaven, Jan S. ;
Maday, Yvon ;
Rodriguez, Jeronimo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02) :970-996
[9]   IMPROVED SUCCESSIVE CONSTRAINT METHOD BASED A POSTERIORI ERROR ESTIMATE FOR REDUCED BASIS APPROXIMATION OF 2D MAXWELL'S PROBLEM [J].
Chen, Yanlai ;
Hesthaven, Jan S. ;
Maday, Yvon ;
Rodriguez, Jeronimo .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (06) :1099-1116
[10]   A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations [J].
Chen, Yanlai ;
Hesthaven, Jan S. ;
Maday, Yvon ;
Rodriguez, Jeronimo .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (23-24) :1295-1300