Chicoric acid (CA) is an active derivative of caffeic acid, which is naturally present in many medicinal plants and vegetables. In the present study, the metabolic profile of CA was determined in rat plasma, urine and feces and was subsequently used to propose the metabolic pathways of CA. CA (100 mg/kg) was orally administered to rats by gastric intubation. Then, the plasma, urine and feces samples were collected and treated with methanol and acetonitrile (1:1, V/V) to precipitate the proteins. The pretreated samples were separated by ultra performance liquid chromatography (UPLC) equipped with an HSS T3 column (2.1 mm x 100 mm I.D., 1.7 pm) and with quadrupole time-of-flight mass spectrometry (Q-TOF-MS) as the detection method. A total of nineteen metabolites were detected and identified based on the characteristics of their deprotonated ions in the plasma, urine and feces samples. The results revealed that the metabolism of CA followed a number of known in-vivo mammalian biotransformation pathways including hydrolysis, reduction, methylation, sulfation, glucuronidation, acetylation, isomerization and deoxygenation.