The emergence of chloroquine resistance has been associated with a dramatic increase in malaria mortality in some human populations from endemic regions. Plasmodium falciparum drug resistant malaria originates from chromosomal mutations. Analysis using molecular genetic and biochemical approaches has shown that 1) impaired intake of chloroquine by the parasite vacuole is a common characteristic of resistant strains, the chloroquine-resistance mechanism regulates the access of chloroquine to hematin, this phenotype correlates with Pfmdr1 and Pfcg2 gene mutations; 2) one to four point mutations of dihydrofolate reductase, the enzyme target of antifolinics (pyrimethamine and proguanil), give moderate to high levels of resistance to these drugs but there is a fitness cost to resistance; 3) the mechanism of resistance to sulfonamides and sulfones involves mutations of dihydropteroate synthase, their enzyme target. 4) treatment with sulphadoxine-pyrimethamine (SP) selected for the variants Ile(51), Arg(59) and Asn(108) of DHFR and for the variants Ser(436), Gly(437), and Glu(540) of DHPS; 5) clones that were resistant to some traditional antimalarial agents acquired resistance to new ones at high frequency (accelerated resistance to multiple drugs-ARMD). Amino-alcohol (quinine, mefloquine, halofantrine) mechanisms of resistance are still unclear Population genetic studies have confirmed that selfing is more frequent in Plasmodium falciparum where the transmission rate is lower in some regions such as Papua-New Guinea, whereas isolates from individuals on the Thai-Burmese border an area of hypoendemic transmission, revealed a higher number of genotypes per infected person. It has been suggested that intense intra-host competition between coinfecting clones, low numbers of genes required to encode resistance, and high drug usage all encourage the emergence of drug resistance. On the other hand, the greater effective recombination in high transmission areas may breakdown multiple drug resistance when it is coded for by two unlinked loci Epidemiological studies have established that the frequency of chloroquine resistant mutants varies among parasite isolate populations while resistance to antifolinics is highly prevalent in most malarial endemic countries (more than 92% of Kenyan field isolates have undergone at least one point mutation). Established and strong drug pressure as well as low antiparasitic immunity probably explains the multidrug-resistance encountered in forests of Southeast Asia and South America. In Africa, frequent genetic recombinations in Plasmodium originate from a high level of malaria transmission, and falciparum chloroquine-resistant prevalence seems to stabilise at an equal level as chloroquine-sensitive malaria. Clinical studies demonstrated that control of clinical symptoms is better when chloroquine is used with sulphadoxine-pyrimethamine (SP) than when SP is used alone, and the cure rate also tends to be higher with the triple combination regimen.