Diversity of thalamorecipient spine morphology in cat visual cortex and its implication for synaptic plasticity

被引:5
作者
da Costa, Nuno Macarico [1 ,2 ]
机构
[1] Univ Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
[2] ETH, CH-8057 Zurich, Switzerland
关键词
spines; thalamocortical; electron microscopy; synapse; SERIAL ELECTRON-MICROSCOPY; CORTICAL AREA V2; DENDRITIC SPINES; MACAQUE MONKEY; BIOPHYSICAL CHARACTERISTICS; POSTSYNAPTIC CALCIUM; ACTION-POTENTIALS; CEREBRAL CORTEX; AMPA RECEPTORS; STELLATE CELLS;
D O I
10.1002/cne.23272
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A feature of spine synapses is the existence of a neck connecting the synapse on the spine head to the dendritic shaft. As with a cable, spine neck resistance (Rneck) increases with increasing neck length and is inversely proportional to the cross-sectional area of the neck. A synaptic current entering a spine with a high Rneck will lead to greater local depolarization in the spine head than would a similar input applied to a spine with a lower Rneck. This could make spines with high Rneck more sensitive to plastic changes since voltage sensitive conductances, such as N-methyl-D-aspartic acid (NMDA) channels can be more easily activated. This hypothesis was tested using serial section electron microscopic reconstructions of thalamocortical spine synapses and spine necks located on spiny stellate cells and corticothalamic cells from area 17 of cats. Thalamic axons and corticothalamic neurons were labeled by injections of the tracer biotinylated dextran amine (BDA) in the dorsal lateral geniculate nucleus (dLGN) of anesthetized cats and spiny stellates were filled intracellularly in vivo with horseradish peroxidase. Twenty-eight labeled spines that formed synapses with dLGN boutons were collected from three spiny stellate and four corticothalamic cells and reconstructed in 3D from serial electron micrographs. Spine length, spine diameter, and the area of the postsynaptic density were measured from the 3D reconstructions and Rneck of the spine was estimated. No correlation was found between the postsynaptic density size and the estimated spine Rneck. This suggests that forms of plasticity that lead to larger synapses are independent of spine neck resistance. J. Comp. Neurol. 521:20582066, 2013. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:2058 / 2066
页数:9
相关论文
共 42 条
[1]   POLYNEURONAL INNERVATION OF SPINY STELLATE NEURONS IN CAT VISUAL-CORTEX [J].
AHMED, B ;
ANDERSON, JC ;
DOUGLAS, RJ ;
MARTIN, KAC ;
NELSON, JC .
JOURNAL OF COMPARATIVE NEUROLOGY, 1994, 341 (01) :39-49
[2]   Synaptic connection from cortical area V4 to V2 in macaque monkey [J].
Anderson, JC ;
Martin, KAC .
JOURNAL OF COMPARATIVE NEUROLOGY, 2006, 495 (06) :709-721
[3]   Connection from cortical area V2 to V3A in macaque monkey [J].
Anderson, JC ;
Martin, KAC .
JOURNAL OF COMPARATIVE NEUROLOGY, 2005, 488 (03) :320-330
[4]   Connection from cortical area V2 to MT in macaque monkey [J].
Anderson, JC ;
Martin, KAC .
JOURNAL OF COMPARATIVE NEUROLOGY, 2002, 443 (01) :56-70
[5]  
Anderson JC, 1998, J NEUROSCI, V18, P10525
[6]   The W Cell Pathway to Cat Primary Visual Cortex [J].
Anderson, John C. ;
da Costa, Nuno Macarico ;
Martin, Kevan A. C. .
JOURNAL OF COMPARATIVE NEUROLOGY, 2009, 516 (01) :20-35
[7]   Dendritic spines linearize the summation of excitatory potentials [J].
Araya, Roberto ;
Eisenthal, Kenneth B. ;
Yuste, Rafael .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (49) :18799-18804
[8]   Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies [J].
Arellano, Jon I. ;
Benavides-Piccione, Ruth ;
DeFelipe, Javier ;
Yuste, Rafael .
FRONTIERS IN NEUROSCIENCE, 2007, 1 (01) :131-143
[9]   A quantitative map of the circuit of cat primary visual cortex [J].
Binzegger, T ;
Douglas, RJ ;
Martin, KAC .
JOURNAL OF NEUROSCIENCE, 2004, 24 (39) :8441-8453
[10]   Neuronal activity regulates diffusion across the neck of dendritic spines [J].
Bloodgood, BL ;
Sabatini, BL .
SCIENCE, 2005, 310 (5749) :866-869