Layer Effect on Graphene Nanoribbon Quantum Capacitance

被引:5
作者
Kiani, Mohammad Javad [1 ,2 ]
Ahmadi, M. T. [1 ,3 ]
Ravangard, S. A. [2 ]
Saeidmanesh, M. [1 ]
Ghadiry, Mandiar [1 ]
Harun, F. K. Che [1 ]
机构
[1] Univ Teknol Malaysia, Fac Elect Engn, Skudai 81310, Johor, Malaysia
[2] Islamic Azad Univ, Dept Elect Engn, Yasooj Branch, Yasuj 7591483587, Iran
[3] Urmia Univ, Dept Elect Engn, Orumiyeh 5756151818, Iran
关键词
Quantum Capacitance; Bilayer Graphene Nanoribbon; Mono Layer Graphene Nanoribbon; Analytical Modelling; Non-Degenerate Regime; Degenerate Regime; Fermi Energy; CARRIER STATISTICS; FULLERENES; MOBILITY; SHEETS; ENERGY; PHASE;
D O I
10.1166/jctn.2013.3209
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene has amazing carrier transport property and high sensitivity at the single molecule level which leads them as a promising material for batteries, energy storage, catalytic and biosensor applications. The quantum capacitance of different layer graphene is the a notable factor in the nano-electronic device modelling and characterization as a basic electronic parameter. In this work analytical modelling of first sub-band energy for Bilayer Graphene Nanoribbons (BGNS) is employed to model quantum capacitance on Mono Layer Graphene Nanoribbon (MGNR) and BG. Based on the presented model in the non-degenerate regime specifies the temperature effect on quantum capacitance is more dominant while in the degenerate limit constant quantum capacitance is reported which is independent of temperature. According to the analytical model the BGN quantum capacitance in comparison with monolayer GNR quantum capacitance is investigated and BGN higher quantum capacitance is reported.
引用
收藏
页码:2328 / 2331
页数:4
相关论文
共 36 条
[1]   Quantum computation with doped silicon cavities [J].
Abanto, M. ;
Davidovich, L. ;
Koiller, Belita ;
de Matos Filho, R. L. .
PHYSICAL REVIEW B, 2010, 81 (08)
[2]   The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite [J].
Abdalla, Mohamed ;
Dean, Derrick ;
Adibempe, David ;
Nyairo, Elijah ;
Robinson, Pamela ;
Thompson, Gregory .
POLYMER, 2007, 48 (19) :5662-5670
[3]   Nature of Graphene Edges: A Review [J].
Acik, Muge ;
Chabal, Yves J. .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (07)
[4]   Carbon nanostructures fullerenes and carbon nanotubes [J].
Ahmad, S .
IETE TECHNICAL REVIEW, 1999, 16 (3-4) :297-310
[5]  
Ahmadi MT, 2009, AIP CONF PROC, V1136, P98, DOI 10.1063/1.3160278
[6]   Stability of interstellar fullerenes under high-dose γ-irradiation [J].
Albarrán, G ;
Basiuk, VA ;
Basiuk, EV ;
Saniger, JM .
SPACE LIFE SCIENCES: STEPS TOWARD ORIGIN(S) OF LIFE, 2004, 33 (01) :72-75
[7]  
Amin N A, 2011, GLOBAL J TECHNOLOGY, V2, P153
[8]   Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications [J].
An, Xiaohong ;
Simmons, Trevor John ;
Shah, Rakesh ;
Wolfe, Christopher ;
Lewis, Kim M. ;
Washington, Morris ;
Nayak, Saroj K. ;
Talapatra, Saikat ;
Kar, Swastik .
NANO LETTERS, 2010, 10 (11) :4295-4301
[9]  
[Anonymous], QUANTUM MATTER
[10]  
[Anonymous], QUANTUM MATTER