Total weight choosability of Mycielski graphs

被引:2
作者
Tang, Yunfang [1 ]
Zhu, Xuding [2 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
关键词
Total weight choosability; Mycielski graph; Matrix; Permanent; Combinatorial Nullstellensatz;
D O I
10.1007/s10878-015-9943-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A total weighting of a graph G is a mapping phi that assigns a weight to each vertex and each edge of G. The vertex-sum of v is an element of V(G) with respect to phi is S-phi(v) = Sigma(e is an element of E(v))phi(e) + phi(v) . A total weighting is proper if adjacent vertices have distinct vertex-sums. A graph is G = (V, E) is called (k, k')-choosable if the following is true: If each vertex x is assigned a set L(x) of k real numbers, and each edge e is assigned a set L(e) of k' real numbers, then there is a proper total weighting phi with phi(y) is an element of L(y) for any y is an element of V boolean OR E . In this paper, we prove that for any graph G not equal K-1,K- the Mycielski graph of G is (1,4)-choosable. Moreover, we give some sufficient conditions for the Mycielski graph of G to be (1,3)-choosable. In particular, our result implies that if G is a complete bipartite graph, a complete graph, a tree, a subcubic graph, a fan, a wheel, a Halin graph, or a grid, then the Mycielski graph of G is (1,3)-choosable.
引用
收藏
页码:165 / 182
页数:18
相关论文
共 50 条
  • [31] Neighbor sum distinguishing total choosability of triangle-free IC-planar graphs
    Chao, Fugang
    Li, Chao
    Zhang, Donghan
    SCIENCEASIA, 2023, 49 (04): : 584 - 587
  • [32] On semi-transitivity of (extended) Mycielski graphs
    Hameed, Humaira
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 83 - 88
  • [33] Edge-chromatic numbers of Mycielski graphs
    Kwon, Young Soo
    Lee, Jaeun
    Zhang, Zhongfu
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1222 - 1225
  • [34] Labeling Mycielski Graphs with a Condition at Distance Two
    Shao, Zhendong
    Solis-Oba, Roberto
    ARS COMBINATORIA, 2018, 140 : 337 - 349
  • [35] Neighbor Sum Distinguishing Total Choosability of IC-Planar Graphs without Theta Graphs Θ2,1,2
    Zhang, Donghan
    MATHEMATICS, 2021, 9 (07)
  • [36] Neighbor sum distinguishing total choosability of planar graphs without adjacent special 5-cycles
    Sun, Lin
    DISCRETE APPLIED MATHEMATICS, 2020, 279 : 146 - 153
  • [37] Non-cover generalized Mycielski, Kneser, and Schrijver graphs
    Lih, Ko-Wei
    Lin, Chen-Ying
    Tong, Li-Da
    DISCRETE MATHEMATICS, 2008, 308 (20) : 4653 - 4659
  • [38] Neighbor-sum-distinguishing edge choosability of subcubic graphs
    Jingjing Huo
    Yiqiao Wang
    Weifan Wang
    Journal of Combinatorial Optimization, 2017, 34 : 742 - 759
  • [39] Neighbor-sum-distinguishing edge choosability of subcubic graphs
    Huo, Jingjing
    Wang, Yiqiao
    Wang, Weifan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) : 742 - 759
  • [40] A NOTE ON HAMEED'S CONJECTURE ON THE SEMI-TRANSITIVITY OF MYCIELSKI GRAPHS
    Kitaev, Sergey
    Pyatkin, Artem, V
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2025,