Information theoretic measures of the income distribution in food demand

被引:17
作者
LaFrance, JT [1 ]
Beatty, TKM
Pope, RD
Agnew, GK
机构
[1] Univ Calif Berkeley, Dept Agr & Resource Econ Econ, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Giannini Fdn Agr Econ, Berkeley, CA 94720 USA
[3] Brigham Young Univ, Dept Econ, Provo, UT 84602 USA
[4] Univ Arizona, Dept Agr & Resource Econ, Tucson, AZ 85721 USA
关键词
functional form; incomplete demand systems; information theory; maximum entropy; rank of demand models;
D O I
10.1016/S0304-4076(01)00122-1
中图分类号
F [经济];
学科分类号
02 ;
摘要
A new method to nest, estimate and test the rank and Functional form of the income terms in an incomplete system of demand equations is developed. Information theory is employed to infer the U.S. income distribution from data on quintile and top five percentile income ranges and intra-quintile and top five percentile mean incomes. Maximum entropy income distributions are combined with data on the U.S. demand for 21 food items to estimate U.S. food demand over the period 1919-1995, excluding 1942-1946. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:235 / 257
页数:23
相关论文
共 39 条
[11]  
GOLAN A, 2001, IN PRESS ESTIMATING
[12]  
GORMAN WM, 1995, SEPARABILITY AGGREGA, P61
[13]  
GORMAN WM, 1981, SEPARABILITY AGGREGA, V1, P351
[14]  
HAUSMAN JA, 1981, AM ECON REV, V71, P662
[15]   THEORY AND TIME-SERIES ESTIMATION OF THE QUADRATIC EXPENDITURE SYSTEM [J].
HOWE, H ;
POLLAK, RA ;
WALES, TJ .
ECONOMETRICA, 1979, 47 (05) :1231-1247
[16]  
Jaynes E, 1984, Inverse problems. SIAM proceedings, V14, P151
[17]   INFORMATION THEORY AND STATISTICAL MECHANICS [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 106 (04) :620-630
[18]   INFORMATION THEORY AND STATISTICAL MECHANICS .2. [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 108 (02) :171-190
[19]  
KULLBACK J, 1951, ANN MATH STAT, V4, P99
[20]  
KULLBACK J, 1959, INFORMATION THEORY S