Orthogonal polynomials on arcs of the unit circle .2. Orthogonal polynomials with periodic reflection coefficients

被引:27
作者
Peherstorfer, F
Steinbauer, R
机构
[1] Institut für Mathematik, Johannes Kepler Univ. Linz, Linz
关键词
orthogonal polynomials; unit circle; arcs; periodic reflection coefficients;
D O I
10.1006/jath.1996.0092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First we give necessary and sufficient conditions on a set of intervals E(1)= U-j=1(l) [phi(2j-1), phi(2j)], phi(1) < ... < phi(2l) and phi(2l) - phi(1) less than or equal to 2 pi, such that on E(I) there exists a real trigonometric polynomial tau(N)(phi) with maximal number, i.e., N + l, of extremal points on E(l). The associated algebraic polynomial F-N(z)=z(N/2)tau(N)(z), z=e(i phi), is called the complex Chebyshev polynomial. Then it is shown that polynomials orthogonal on E(l) have periodic reflection coefficients if and only if they are orthogonal on E(l) with respect to a measure of the form root-Pi(j=1)(2l)sin((phi - phi(j))/2)/ A(phi)d phi+ certain point measures, where A is a real trigonometric polynomial with no zeros on E(l) and there exists a complex Chebyshev polynomial on E(l). Let us point out in this connection that Geronimus has shown that orthogonal polyno mials generated by periodic reflection coefficients of absolute value less than 1 are orthogonal with respect to a measure of the above type. Furthermore, we derive explicit representations of the corresponding orthogonal polynomials with the help of the complex Chebyshev polynomials. Finally, we provide a characterization of those definite functionals to which orthogonal polynomials with periodic reflection coefficients of modulus unequal to one are orthogonal. (C) 1996 Academic Press, Inc.
引用
收藏
页码:60 / 102
页数:43
相关论文
共 25 条
[1]  
Akhiezer N.I, 1960, Sov. Math. Dokl., V1, P31
[2]  
AKHIEZER NI, 1962, SOME QUESTIONS THEOR
[3]  
APTEKAREV AI, 1986, MATH USSR SB, V53, P233, DOI DOI 10.1070/SM1986v053n01ABEH002918
[4]  
BERNSTEIN SN, 1930, COMM KHARKOV MATH SO, V4, P79
[5]   ORTHOGONAL POLYNOMIALS ON SEVERAL INTERVALS VIA A POLYNOMIAL MAPPING [J].
GERONIMO, JS ;
VANASSCHE, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (02) :559-581
[6]  
GERONIMUS JL, 1944, MATH USSR SB, V15, P99
[7]  
GERONIMUS YL, 1941, IZV AKAD NAUK SSSR M, V5, P203
[8]  
GERONIMUS YL, 1943, CR DOKL ACAD SCI URS, V29, P291
[9]  
GOLINSKII BL, 1980, IZV ACAD NAUK ARMY M, V15, P127
[10]   PERTURBATION OF ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT-CIRCLE [J].
GOLINSKII, L ;
NEVAI, P ;
VANASSCHE, W .
JOURNAL OF APPROXIMATION THEORY, 1995, 83 (03) :392-422