Tunable room-temperature continuous-wave mid-infrared VCSELs

被引:6
作者
Jayaraman, V [1 ]
Kolasa, B. [1 ]
Lindblad, C. [1 ]
Cazabat, A. [1 ]
Burgner, C. [1 ]
Segal, S. [2 ]
Lascola, K. [3 ]
Towner, F. [3 ]
Xie, F. [3 ]
机构
[1] Praevium Res Inc, 601C Pine Ave, Goleta, CA 93117 USA
[2] Ball Aerosp, Broomfield, CO USA
[3] Thorlabs Quantum Elect, 10335 Guilford Rd, Jessup, MD USA
来源
VERTICAL-CAVITY SURFACE-EMITTING LASERS XXIV | 2020年 / 11300卷
关键词
vertical cavity surface emitting laser; mid-infrared laser; methane detection; MEMS-VCSEL; SPECTROSCOPY;
D O I
10.1117/12.2541514
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Over the last two years, our group has reported the first room-temperature continuous-wave (RTCW) fixed wavelength VCSELs operating above 3 microns, in both optically pumped and electrically pumped devices. Our optically pumped 3.3um devices employ one or two wafer-bonded GaAs/AlGaAs mirrors, in conjunction with a type I InGaAsSb/AlInGaAsSb quantum well active region. Our electrically pumped 3.3um devices employ a bottom wafer-bonded GaAs/AlGaAs mirror, top deposited ZnSe/ThF4 mirror, and type II interband cascade (ICL) active region. These fixed wavelength devices lay a foundation for tunable devices in the spectrally rich 3-5um region. Narrowly tunable devices can use thermal tuning, by variation of pump power (optically pumped devices), bias current (electrically pumped devices), or device temperature (both electrically and optically pumped devices). In this paper, we describe tunable CW optically pumped devices with >4nm of tuning near 3.3um using variation of pump power. CW electrically pumped devices show similar to 2nm tuning near 3.3um using variation of bias current. These results are a critical first step towards an inexpensive and high-speed methane sensing source. A first generation of MEMS-tunable optically pumped devices has achieved 70nm tuning range near 3.34um.
引用
收藏
页数:9
相关论文
共 17 条
[1]   ROOM-TEMPERATURE CONTINUOUS-WAVE OPERATION OF 1.54-MU-UM VERTICAL-CAVITY LASERS [J].
BABIC, DI ;
STREUBLE, K ;
MIRIN, RP ;
MARGALIT, NM ;
BOWERS, JE ;
HU, EL ;
MARS, DE ;
YANG, L ;
CAREY, K .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1995, 7 (11) :1225-1227
[2]   Type-I Diode Lasers for Spectral Region Above 3 μm [J].
Belenky, Gregory ;
Shterengas, Leon ;
Kipshidze, Gela ;
Hosoda, Takashi .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (05) :1426-1434
[3]   Room-temperature mid-infrared interband cascade vertical-cavity surface-emitting lasers [J].
Bewley, W. W. ;
Canedy, C. L. ;
Kim, C. S. ;
Merritt, C. D. ;
Warren, M. V. ;
Vurgaftman, I. ;
Meyer, J. R. ;
Kim, M. .
APPLIED PHYSICS LETTERS, 2016, 109 (15)
[4]  
Cole G. D., 2016, LOW LOSS CRYSTALLINE
[5]   DESIGN OF FABRY-PEROT SURFACE-EMITTING LASERS WITH A PERIODIC GAIN STRUCTURE [J].
CORZINE, SW ;
GEELS, RS ;
SCOTT, JW ;
YAN, RH ;
COLDREN, LA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (06) :1513-1524
[6]   High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range [J].
Jayaraman, V. ;
Cole, G. D. ;
Robertson, M. ;
Uddin, A. ;
Cable, A. .
ELECTRONICS LETTERS, 2012, 48 (14) :867-868
[7]  
Jayaraman V., 2018, ROOM TEMPERATURE CON
[8]  
Jayaraman V., ROOM TEMPERATURE CON
[9]   VERTICAL CAVITY SINGLE QUANTUM WELL LASER [J].
JEWELL, JL ;
HUANG, KF ;
TAI, K ;
LEE, YH ;
FISCHER, RJ ;
MCCALL, SL ;
CHO, AY .
APPLIED PHYSICS LETTERS, 1989, 55 (05) :424-426
[10]   The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures:: a selective review [J].
Kroemer, H .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 20 (3-4) :196-203