Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease

被引:21
作者
Platero, Carlos [1 ]
Lin, Lin [2 ]
Carmen Tobar, M. [1 ]
机构
[1] Univ Politecn Madrid, Hlth Sci Technol Grp, Ronda Valencia 3, Madrid 28012, Spain
[2] Univ Politecn Madrid, Ronda Valencia 3, Madrid 28012, Spain
基金
美国国家卫生研究院;
关键词
Alzheimer's disease; MRI; Hippocampal segmentation; Longitudinal analysis; MILD COGNITIVE IMPAIRMENT; LABEL FUSION METHOD; SEGMENTATION APPLICATION; ASSOCIATION WORKGROUPS; AUTOMATIC SEGMENTATION; NATIONAL INSTITUTE; MRI; ATROPHY; REGISTRATION; PROGRESSION;
D O I
10.1007/s12021-018-9380-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) = 0.947 for the control vs AD, AUC = 0.720 for mild cognitive impairment (MCI) vs AD, and AUC = 0.805 for the control vs MCI.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 63 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]  
[Anonymous], 2010, ANN: a library for approximate nearest neighbor searching
[3]   Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects [J].
Apostolova, Liana G. ;
Morra, Jonathan H. ;
Green, Amity E. ;
Hwang, Kristy S. ;
Avedissian, Christina ;
Woo, Ellen ;
Cummings, Jeffrey L. ;
Toga, Arthur W. ;
Jack, Clifford R., Jr. ;
Weiner, Michael W. ;
Thompson, Paul M. .
NEUROIMAGE, 2010, 51 (01) :488-499
[4]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[5]   A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood [J].
Aubert-Broche, B. ;
Fonov, V. S. ;
Garcia-Lorenzo, D. ;
Mouiha, A. ;
Guizard, N. ;
Coupe, P. ;
Eskildsen, S. F. ;
Collins, D. L. .
NEUROIMAGE, 2013, 82 :393-402
[6]   PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing [J].
Barnes, Connelly ;
Shechtman, Eli ;
Finkelstein, Adam ;
Goldman, Dan B. .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03)
[7]   Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models [J].
Bernal-Rusiel, Jorge L. ;
Greve, Douglas N. ;
Reuter, Martin ;
Fischl, Bruce ;
Sabuncu, Mert R. .
NEUROIMAGE, 2013, 66 :249-260
[8]   Survey of Protocols for the Manual Segmentation of the Hippocampus: Preparatory Steps Towards a Joint EADC-ADNI Harmonized Protocol [J].
Boccardi, Marina ;
Ganzola, Rossana ;
Bocchetta, Martina ;
Pievani, Michela ;
Redolfi, Alberto ;
Bartzokis, George ;
Camicioli, Richard ;
Csernansky, John G. ;
de Leon, Mony J. ;
deToledo-Morrell, Leyla ;
Killiany, Ronald J. ;
Lehericy, Stephane ;
Pantel, Johannes ;
Pruessner, Jens C. ;
Soininen, H. ;
Watson, Craig ;
Duchesne, Simon ;
Jack, Clifford R., Jr. ;
Frisoni, Giovanni B. .
JOURNAL OF ALZHEIMERS DISEASE, 2011, 26 :61-75
[9]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[10]   Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry [J].
Chetelat, G. ;
Fouquet, M. ;
Kalpouzos, G. ;
Denghien, I. ;
De la Sayette, V. ;
Viader, F. ;
Mezenge, F. ;
Landeau, B. ;
Baron, J. C. ;
Eustache, F. ;
Desgranges, B. .
NEUROPSYCHOLOGIA, 2008, 46 (06) :1721-1731