Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease

被引:21
|
作者
Platero, Carlos [1 ]
Lin, Lin [2 ]
Carmen Tobar, M. [1 ]
机构
[1] Univ Politecn Madrid, Hlth Sci Technol Grp, Ronda Valencia 3, Madrid 28012, Spain
[2] Univ Politecn Madrid, Ronda Valencia 3, Madrid 28012, Spain
基金
美国国家卫生研究院;
关键词
Alzheimer's disease; MRI; Hippocampal segmentation; Longitudinal analysis; MILD COGNITIVE IMPAIRMENT; LABEL FUSION METHOD; SEGMENTATION APPLICATION; ASSOCIATION WORKGROUPS; AUTOMATIC SEGMENTATION; NATIONAL INSTITUTE; MRI; ATROPHY; REGISTRATION; PROGRESSION;
D O I
10.1007/s12021-018-9380-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) = 0.947 for the control vs AD, AUC = 0.720 for mild cognitive impairment (MCI) vs AD, and AUC = 0.805 for the control vs MCI.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 50 条
  • [1] Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer’s Disease
    Carlos Platero
    Lin Lin
    M. Carmen Tobar
    Neuroinformatics, 2019, 17 : 43 - 61
  • [2] Differential atrophy along the longitudinal hippocampal axis in Alzheimer's disease for the Alzheimer's Disease Neuroimaging Initiative
    Morais-Ribeiro, Rafaela
    Almeida, Francisco C.
    Coelho, Ana
    Oliveira, Tiago Gil
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2024, 59 (12) : 3376 - 3388
  • [3] Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls
    Barnes, Josephine
    Carmichael, Owen T.
    Leung, Kelvin K.
    Schwarz, Christopher
    Ridgway, Gerard R.
    Bartlett, Jonathan W.
    Malone, Ian B.
    Schott, Jonathan M.
    Rossor, Martin N.
    Biessels, Geert Jan
    DeCarli, Charlie
    Fox, Nick C.
    NEUROBIOLOGY OF AGING, 2013, 34 (08) : 1996 - 2002
  • [4] Markers of prodromal Alzheimer's disease
    de Souza, L. C.
    Sarazin, M.
    Uspenskaya, O.
    Habert, M. -O.
    Lamari, F.
    Lehericy, S.
    Dubois, B.
    REVUE NEUROLOGIQUE, 2012, 168 (11) : 815 - 824
  • [5] Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia
    Ewers, Michael
    Sperling, Reisa A.
    Klunk, William E.
    Weiner, Michael W.
    Hampel, Harald
    TRENDS IN NEUROSCIENCES, 2011, 34 (08) : 430 - 442
  • [6] Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease
    Gray, Katherine R.
    Wolz, Robin
    Heckemann, Rolf A.
    Aljabar, Paul
    Hammers, Alexander
    Rueckert, Daniel
    NEUROIMAGE, 2012, 60 (01) : 221 - 229
  • [7] A review of β-amyloid neuroimaging in Alzheimer's disease
    Adlard, Paul A.
    Tran, Bob A.
    Finkelstein, David I.
    Desmond, Patricia M.
    Johnston, Leigh A.
    Bush, Ashley I.
    Egan, Gary F.
    FRONTIERS IN NEUROSCIENCE, 2014, 8
  • [8] Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease
    Chincarini, Andrea
    Sensi, Francesco
    Rei, Luca
    Gemme, Gianluca
    Squarcia, Sandro
    Longo, Renata
    Brun, Francesco
    Tangaro, Sabina
    Bellotti, Roberto
    Amorosoc, Nicola
    Bocchetta, Martina
    Redolfi, Alberto
    Bosco, Paolo
    Boccardi, Marina
    Frisoni, Giovanni B.
    Nobili, Flavio
    NEUROIMAGE, 2016, 125 : 834 - 847
  • [9] Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2
    Jack, Clifford R., Jr.
    Barnes, Josephine
    Bernstein, Matt A.
    Borowski, Bret J.
    Brewer, James
    Clegg, Shona
    Dale, Anders M.
    Carmichael, Owen
    Ching, Christopher
    DeCarli, Charles
    Desikan, Rahul S.
    Fennema-Notestine, Christine
    Fjell, Anders M.
    Fletcher, Evan
    Fox, Nick C.
    Gunter, Jeff
    Gutman, Boris A.
    Holland, Dominic
    Hua, Xue
    Insel, Philip
    Kantarci, Kejal
    Killiany, Ron J.
    Krueger, Gunnar
    Leung, Kelvin K.
    Mackin, Scott
    Maillard, Pauline
    Malone, Ian B.
    Mattsson, Niklas
    McEvoy, Linda
    Modat, Marc
    Mueller, Susanne
    Nosheny, Rachel
    Ourselin, Sebastien
    Schuff, Norbert
    Senjem, Matthew L.
    Simonson, Alix
    Thompson, Paul M.
    Rettmann, Dan
    Vemuri, Prashanthi
    Walhovd, Kristine
    Zhao, Yansong
    Zuk, Samantha
    Weiner, Michael
    ALZHEIMERS & DEMENTIA, 2015, 11 (07) : 740 - 756
  • [10] A Focus on Structural Brain Imaging in the Alzheimer's Disease Neuroimaging Initiative
    Braskie, Meredith N.
    Thompson, Paul M.
    BIOLOGICAL PSYCHIATRY, 2014, 75 (07) : 527 - 533