AN EVALUATION OF EFFICIENT POINTS FOR VECTOR OPTIMIZATION

被引:0
作者
Nuriya, Tetsuya [1 ]
Kuroiwa, Daishi [2 ]
机构
[1] Shimane Univ, Interdisciplinary Grad Sch Sci & Engn, Dept Elect Funct & Syst Engn, Matsue, Shimane 6908504, Japan
[2] Shimane Univ, Interdisciplinary Fac Sci & Engn, Dept Math & Comp Sci, Matsue, Shimane 6908504, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2008年 / 12卷 / 08期
关键词
Vector optimization; Efficiency; Proper efficiency; Weakly efficiency; Ideal efficiency; Unified representation;
D O I
10.11650/twjm/1500405136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, to decide the best point of many efficient points in vector optimization, we consider an evaluate method of efficient points for solutions in vector optimization problem. We introduce an evaluate function of efficient points, and show properties of the evaluate function.
引用
收藏
页码:2063 / 2082
页数:20
相关论文
共 50 条
[41]   Efficient hybrid conjugate gradient techniques for vector optimization [J].
Yahaya, Jamilu ;
Kumam, Poom .
RESULTS IN CONTROL AND OPTIMIZATION, 2024, 14
[42]   Stability results for efficient solutions of vector optimization problems [J].
Xiang, S. W. ;
Yin, W. S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 134 (03) :385-398
[43]   Second-Order Efficiency Conditions and Sensitivity of Efficient Points [J].
S. Bolintinéanu ;
M. El Maghri .
Journal of Optimization Theory and Applications, 1998, 98 :569-592
[44]   Second-order efficiency conditions and sensitivity of efficient points [J].
Bolintineanu, S ;
El Maghri, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (03) :569-592
[45]   APPROXIMATE KKT POINTS FOR SMOOTH VECTOR OPTIMIZATION PROBLEMS IN INFINITE DIMENSIONAL SPACES [J].
Li, Runxin ;
Yao, Jen-Chih ;
Zheng, Xi Yin .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (07) :1385-1396
[47]   NONCONVEX SEPARATION THEOREMS AND SOME APPLICATIONS IN VECTOR OPTIMIZATION [J].
GERTH, C ;
WEIDNER, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 67 (02) :297-320
[48]   HYBRID APPROXIMATE PROXIMAL ALGORITHMS FOR EFFICIENT SOLUTIONS IN VECTOR OPTIMIZATION [J].
Thai Doan Chuong ;
Mordukhovich, B. S. ;
Yao, Jen-Chih .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (02) :257-286
[49]   Newton-like methods for efficient solutions in vector optimization [J].
Thai Doan Chuong .
Computational Optimization and Applications, 2013, 54 :495-516
[50]   On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems [J].
César Gutiérrez ;
Rubén López .
Journal of Optimization Theory and Applications, 2020, 185 :880-902