AN EVALUATION OF EFFICIENT POINTS FOR VECTOR OPTIMIZATION

被引:0
作者
Nuriya, Tetsuya [1 ]
Kuroiwa, Daishi [2 ]
机构
[1] Shimane Univ, Interdisciplinary Grad Sch Sci & Engn, Dept Elect Funct & Syst Engn, Matsue, Shimane 6908504, Japan
[2] Shimane Univ, Interdisciplinary Fac Sci & Engn, Dept Math & Comp Sci, Matsue, Shimane 6908504, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2008年 / 12卷 / 08期
关键词
Vector optimization; Efficiency; Proper efficiency; Weakly efficiency; Ideal efficiency; Unified representation;
D O I
10.11650/twjm/1500405136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, to decide the best point of many efficient points in vector optimization, we consider an evaluate method of efficient points for solutions in vector optimization problem. We introduce an evaluate function of efficient points, and show properties of the evaluate function.
引用
收藏
页码:2063 / 2082
页数:20
相关论文
共 50 条
[21]   Criteria of Saddle Points for the General Form of Vector Optimization Problem in Complex Space [J].
Elbrolosy, Mamdouh E. .
FILOMAT, 2020, 34 (01) :221-230
[22]   SUPER EFFICIENCY IN VECTOR OPTIMIZATION [J].
BORWEIN, JM ;
ZHUANG, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :105-122
[23]   Steepest descent methods for critical points in vector optimization problems [J].
Chuong, Thai Doan ;
Yao, Jen-Chih .
APPLICABLE ANALYSIS, 2012, 91 (10) :1811-1829
[24]   Holder-like properties of minimal points in vector optimization [J].
Bednarczuk, EM .
CONTROL AND CYBERNETICS, 2002, 31 (03) :423-438
[25]   Existence of weakly efficient solutions in vector optimization [J].
Santos, Lucelina Batista ;
Rojas-Medar, Marko ;
Ruiz-Garzon, Gabriel .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) :599-606
[26]   Approximation of Weak Efficient Solutions in Vector Optimization [J].
Huerga, Lidia ;
Gutierrez, Cesar ;
Jimenez, Bienvenido ;
Novo, Vicente .
MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 :481-489
[27]   Existence of weakly efficient solutions in vector optimization [J].
Lucelina Batista Santos ;
Marko Rojas-Medar ;
Gabriel Ruiz-Garzón .
Acta Mathematica Sinica, English Series, 2008, 24
[28]   Existence of Weakly Efficient Solutions in Vector Optimization [J].
Lucelina BATISTA SANTOS ;
Marko ROJASMEDAR ;
Gabriel RUIZGARZN .
Acta Mathematica Sinica(English Series), 2008, 24 (04) :599-606
[29]   Saddle points and gap functions for vector equilibrium problems via conjugate duality in vector optimization [J].
Li, S. J. ;
Yao, S. F. ;
Chen, C. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) :853-865
[30]   Duality and saddle-points for convex-like vector optimization problems on real linear spaces [J].
Miguel Adán ;
Vicente Novo .
Top, 2005, 13 (2) :343-357