AN EVALUATION OF EFFICIENT POINTS FOR VECTOR OPTIMIZATION

被引:0
作者
Nuriya, Tetsuya [1 ]
Kuroiwa, Daishi [2 ]
机构
[1] Shimane Univ, Interdisciplinary Grad Sch Sci & Engn, Dept Elect Funct & Syst Engn, Matsue, Shimane 6908504, Japan
[2] Shimane Univ, Interdisciplinary Fac Sci & Engn, Dept Math & Comp Sci, Matsue, Shimane 6908504, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2008年 / 12卷 / 08期
关键词
Vector optimization; Efficiency; Proper efficiency; Weakly efficiency; Ideal efficiency; Unified representation;
D O I
10.11650/twjm/1500405136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, to decide the best point of many efficient points in vector optimization, we consider an evaluate method of efficient points for solutions in vector optimization problem. We introduce an evaluate function of efficient points, and show properties of the evaluate function.
引用
收藏
页码:2063 / 2082
页数:20
相关论文
共 50 条
[1]   Characterizations of efficient and weakly efficient points in nonconvex vector optimization [J].
Zhao, Ke Quan ;
Yang, Xin Min .
JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (03) :575-590
[2]   Efficient and weak efficient points in vector optimization with generalized cone convexity [J].
Adán, M ;
Novo, V .
APPLIED MATHEMATICS LETTERS, 2003, 16 (02) :221-225
[3]   Characterizations of efficient and weakly efficient points in nonconvex vector optimization [J].
Ke Quan Zhao ;
Xin Min Yang .
Journal of Global Optimization, 2015, 61 :575-590
[4]   Connectedness of efficient points in convex and convex transformable vector optimization [J].
Hirschberger, M .
OPTIMIZATION, 2005, 54 (03) :283-304
[5]   Vector critical points and efficiency in vector optimization with Lipschitz functions [J].
C. Gutiérrez ;
B. Jiménez ;
V. Novo ;
G. Ruiz-Garzón .
Optimization Letters, 2016, 10 :47-62
[6]   Vector critical points and efficiency in vector optimization with Lipschitz functions [J].
Gutierrez, C. ;
Jimenez, B. ;
Novo, V. ;
Ruiz-Garzon, G. .
OPTIMIZATION LETTERS, 2016, 10 (01) :47-62
[7]   Existence of Efficient Points in Vector Optimization and Generalized Bishop–Phelps Theorem [J].
K.F. Ng ;
X.Y. Zheng .
Journal of Optimization Theory and Applications, 2002, 115 :29-47
[8]   Stability of properly efficient points and isolated minimizers of constrained vector optimization problems [J].
Ginchev I. ;
Guerraggio A. ;
Rocca M. .
Rendiconti del Circolo Matematico di Palermo, 2007, 56 (1) :137-156
[9]   Existence of efficient points in vector optimization and generalized Bishop-Phelps theorem [J].
Ng, KF ;
Zheng, XY .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 115 (01) :29-47
[10]   Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization [J].
Fernando García-Castaño ;
Miguel Ángel Melguizo-Padial ;
G. Parzanese .
Mathematical Methods of Operations Research, 2023, 97 :367-382