HOMOTOPY THEORIES OF DIAGRAMS

被引:0
作者
Jardine, J. F. [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
来源
THEORY AND APPLICATIONS OF CATEGORIES | 2013年 / 28卷
基金
加拿大自然科学与工程研究理事会;
关键词
model structures; presheaves of categories; diagrams; SIMPLICIAL PRESHEAVES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that S is a space. There is an injective and a projective model structure for the resulting category of spaces with S-action, and both are easily derived. These model structures are special cases of model structures for presheaf-valued diagrams X defined on a fixed presheaf of categories E which is enriched in simplicial sets. Varying the parameter category object E (or parameter space S) along with the diagrams X up to weak equivalence requires model structures for E-diagrams having weak equivalences defined by homotopy colimits, and a generalization of Thomason's model structure for small categories to a model structure for presheaves of simplicial categories.
引用
收藏
页码:269 / 303
页数:35
相关论文
共 11 条
[1]  
Cisinski D-C, 1999, Cahiers Topologie Geom. Differentielle Categ., V40, P227
[2]  
Goerss Paul G., 1999, Progress in Mathematics, V174
[3]  
Jardine J., 2004, THEOR APPL CATEG, V12, P34
[4]   Diagrams and torsors [J].
Jardine, J. F. .
K-THEORY, 2006, 37 (03) :291-309
[5]   Intermediate model structures for simplicial presheaves [J].
Jardine, J. F. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (03) :407-413
[6]   PATH CATEGORIES AND RESOLUTIONS [J].
Jardine, J. F. .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2010, 12 (02) :231-244
[7]  
Jardine J.F, 1996, DOC MATH, V1, P245
[8]   SIMPLICIAL PRESHEAVES [J].
JARDINE, JF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 47 (01) :35-87
[9]   Higher principal bundles [J].
Jardine, JF ;
Luo, Z .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 :221-243
[10]  
Thomason R., 1980, Cah. Topol. Geom. Differ., V21, P305