Uncertainty-aware deep co-training for semi-supervised medical image segmentation

被引:27
作者
Zheng, Xu [1 ]
Fu, Chong [1 ,2 ,3 ]
Xie, Haoyu [1 ]
Chen, Jialei [1 ]
Wang, Xingwei [1 ]
Sham, Chiu-Wing [4 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
[2] Minist Educ, Engn Res Ctr Secur Technol Complex Network Syst, Shenyang, Peoples R China
[3] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang 110819, Peoples R China
[4] Univ Auckland, Sch Comp Sci, Auckland, New Zealand
关键词
Semi-supervised learning; Co-training; Uncertainty; Medical image segmentation;
D O I
10.1016/j.compbiomed.2022.106051
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Semi-supervised learning has made significant strides in the medical domain since it alleviates the heavy burden of collecting abundant pixel-wise annotated data for semantic segmentation tasks. Existing semi-supervised approaches enhance the ability to extract features from unlabeled data with prior knowledge obtained from limited labeled data. However, due to the scarcity of labeled data, the features extracted by the models are limited in supervised learning, and the quality of predictions for unlabeled data also cannot be guaranteed. Both will impede consistency training. To this end, we proposed a novel uncertainty-aware scheme to make models learn regions purposefully. Specifically, we employ Monte Carlo Sampling as an estimation method to attain an uncertainty map, which can serve as a weight for losses to force the models to focus on the valuable region according to the characteristics of supervised learning and unsupervised learning. Simultaneously, in the backward process, we joint unsupervised and supervised losses to accelerate the convergence of the network via enhancing the gradient flow between different tasks. Quantitatively, we conduct extensive experiments on three challenging medical datasets. Experimental results show desirable improvements to state-of-the-art counterparts.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] UNCERTAINTY-AWARE SEMI-SUPERVISED FRAMEWORK FOR AUTOMATIC SEGMENTATION OF MACULAR EDEMA IN OCT IMAGES
    Liu, Xiaoming
    Wang, Shaocheng
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1453 - 1456
  • [32] Uncertainty-aware multi-view co-training for semi-supervise d me dical image segmentation and domain adaptation
    Xia, Yingda
    Yang, Dong
    Yu, Zhiding
    Liu, Fengze
    Cai, Jinzheng
    Yu, Lequan
    Zhu, Zhuotun
    Xu, Daguang
    Yuille, Alan
    Roth, Holger
    MEDICAL IMAGE ANALYSIS, 2020, 65 (65)
  • [33] Correlation-Aware Mutual Learning for Semi-supervised Medical Image Segmentation
    Gao, Shengbo
    Zhang, Ziji
    Ma, Jiechao
    Li, Zihao
    Zhang, Shu
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 98 - 108
  • [34] A Lightweight Deep Semi-supervised Student Model for Medical Image Segmentation
    Le Dinh Huynh
    Truong Cong Doan
    Phan Duy Hung
    COOPERATIVE DESIGN, VISUALIZATION, AND ENGINEERING, CDVE 2024, 2024, 15158 : 233 - 242
  • [35] Uncertainty Global Contrastive Learning Framework for Semi-Supervised Medical Image Segmentation
    Liu, Hengyang
    Ren, Pengcheng
    Yuan, Yang
    Song, Chengyun
    Luo, Fen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 433 - 442
  • [36] FUSSNet: Fusing Two Sources of Uncertainty for Semi-supervised Medical Image Segmentation
    Xiang, Jinyi
    Qiu, Peng
    Yang, Yang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 481 - 491
  • [37] Co-Training Semi-Supervised Deep Learning for Sentiment Classification of MOOC Forum Posts
    Chen, Jing
    Feng, Jun
    Sun, Xia
    Liu, Yang
    SYMMETRY-BASEL, 2020, 12 (01):
  • [38] DHC: Dual-Debiased Heterogeneous Co-training Framework for Class-Imbalanced Semi-supervised Medical Image Segmentation
    Wang, Haonan
    Li, Xiaomeng
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 582 - 591
  • [39] Deep semi-supervised learning for medical image segmentation: A review
    Han, Kai
    Sheng, Victor S.
    Song, Yuqing
    Liu, Yi
    Qiu, Chengjian
    Ma, Siqi
    Liu, Zhe
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [40] Deep Mutual Distillation for Semi-supervised Medical Image Segmentation
    Xie, Yushan
    Yin, Yuejia
    Li, Qingli
    Wang, Yan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 540 - 550