Computational prediction models for assessing endocrine disrupting potential of chemicals

被引:21
作者
Sakkiah, Sugunadevi [1 ]
Guo, Wenjing [1 ]
Pan, Bohu [1 ]
Kusko, Rebecca [2 ]
Tong, Weida [1 ]
Hong, Huixiao [1 ]
机构
[1] US FDA, Div Bioinformat & Biostat, Natl Ctr Toxicol Res, Jefferson, AR USA
[2] Immuneering Corp, Cambridge, MA USA
关键词
endocrine disrupting chemicals; androgen receptor; estrogen receptor; alpha-fetoprotein; Human sex hormone binding globulin; quantitative structure-activity relationship; FIELD ANALYSIS COMFA; ESTROGEN-RECEPTOR BINDING; LARGE DIVERSE SET; MOLECULAR-DYNAMICS SIMULATION; ALPHA-FETOPROTEIN; ENVIRONMENTAL CHEMICALS; NONSTEROIDAL LIGANDS; 4D-QSAR ANALYSIS; DECISION FOREST; QSAR MODELS;
D O I
10.1080/10590501.2018.1537132
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Endocrine disrupting chemicals (EDCs) mimic natural hormones and disrupt endocrine function. Humans and wildlife are exposed to EDCs might alter endocrine functions through various mechanisms and lead to an adverse effects. Hence, EDCs identification is important to protect the ecosystem and to promote the public health. Leveraging in-vitro and in-vivo experiments to identify potential EDCs is time consuming and expensive. Hence, quantitative structure-activity relationship is applied to screen the potential EDCs. Here, we summarize the predictive models developed using various algorithms to forecast the binding activity of chemicals to the estrogen and androgen receptors, alpha-fetoprotein, and sex hormone binding globulin.
引用
收藏
页码:192 / 218
页数:27
相关论文
共 133 条
[11]   Successful in silico discovery of novel nonsteroidal ligands for human sex hormone binding globulin [J].
Cherkasov, A ;
Shi, Z ;
Fallahi, M ;
Hammon, GL .
JOURNAL OF MEDICINAL CHEMISTRY, 2005, 48 (09) :3203-3213
[12]   An updated steroid benchmark set and its application in the discovery of novel nanomolar ligands of sex hormone-binding globulin [J].
Cherkasov, Artern ;
Ban, Fuqiang ;
Santos-Filho, Osvaldo ;
Thorsteinson, Nels ;
Fallahi, Magid ;
Hammond, Geoffrey L. .
JOURNAL OF MEDICINAL CHEMISTRY, 2008, 51 (07) :2047-2056
[13]   DEVELOPMENTAL EFFECTS OF ENDOCRINE-DISRUPTING CHEMICALS IN WILDLIFE AND HUMANS [J].
COLBORN, T ;
SAAL, FSV ;
SOTO, AM .
ENVIRONMENTAL HEALTH PERSPECTIVES, 1993, 101 (05) :378-384
[14]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[15]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[16]  
Cristianini N., 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, P189
[17]   A novel 3D-QSAR comparative molecular field analysis (CoMFA) model of imidazole and quinazolinone functionalized p38 MAP kinase inhibitors [J].
da Silva, GMS ;
Sant'Anna, CMR ;
Barreiro, EJ .
BIOORGANIC & MEDICINAL CHEMISTRY, 2004, 12 (12) :3159-3166
[18]   A structural perspective on nuclear receptors as targets of environmental compounds [J].
Delfosse, Vanessa ;
le Maire, Albane ;
Balaguer, Patrick ;
Bourguet, William .
ACTA PHARMACOLOGICA SINICA, 2015, 36 (01) :88-101
[19]   Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement [J].
Diamanti-Kandarakis, Evanthia ;
Bourguignon, Jean-Pierre ;
Giudice, Linda C. ;
Hauser, Russ ;
Prins, Gail S. ;
Soto, Ana M. ;
Zoeller, R. Thomas ;
Gore, Andrea C. .
ENDOCRINE REVIEWS, 2009, 30 (04) :293-342
[20]   The EDKB: an established knowledge base for endocrine disrupting chemicals [J].
Ding, Don ;
Xu, Lei ;
Fang, Hong ;
Hong, Huixiao ;
Perkins, Roger ;
Harris, Steve ;
Bearden, Edward D. ;
Shi, Leming ;
Tong, Weida .
BMC BIOINFORMATICS, 2010, 11