Bias-reduced estimation of long-memory stochastic volatility

被引:9
作者
Frederiksen, Per [1 ]
Nielsen, Morten Orregaard [2 ]
机构
[1] Nordea Markets, Equ Trading & Derivat, DK-1401 Copenhagen C, Denmark
[2] Cornell Univ, Ithaca, NY 14853 USA
关键词
bias reduction; local Whittle estimation; long memory stochastic volatility model;
D O I
10.1093/jjfinec/nbn009
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose to use a variant of the local polynomial Whittle estimator to estimate the memory parameter in volatility for long-memory stochastic volatility models with potential nonstationarity in the volatility process. We show that the estimator is asymptotically normal and capable of obtaining bias reduction as well as a rate of convergence arbitrarily close to the parametric rate, n(1/2). A Monte Carlo study is conducted to support the theoretical results, and an analysis of daily exchange rates demonstrates the empirical usefulness of the estimators.
引用
收藏
页码:496 / 512
页数:17
相关论文
共 31 条
[11]   The detection and estimation of long memory in stochastic volatility [J].
Breidt, FJ ;
Crato, N ;
de Lima, P .
JOURNAL OF ECONOMETRICS, 1998, 83 (1-2) :325-348
[12]   Long memory in continuous-time stochastic volatility models [J].
Comte, F ;
Renault, E .
MATHEMATICAL FINANCE, 1998, 8 (04) :291-323
[13]   On the log periodogram regression estimator of the memory parameter in long memory stochastic volatility models [J].
Deo, RS ;
Hurvich, CM .
ECONOMETRIC THEORY, 2001, 17 (04) :686-710
[14]  
Ding Z., 1993, J EMPIR FINANC, V1, P83, DOI [DOI 10.1016/0927-5398(93)90006-D, 10.1016/0927-5398(93)90006-D]
[15]  
Doornik J. A, 2006, OX OBJECT ORIENTED M
[16]  
Fox R., 1986, J TIME SER ANAL, V4, P221
[17]  
FREDERIKSEN PH, 2007, LOCAL POLYNOMIAL WHI
[18]  
Fuller W.A., 1996, INTRO STAT TIME SERI, V2nd
[19]  
Geweke J., 1983, J TIME SER ANAL, V4, P221, DOI [DOI 10.1111/J.1467-9892.1983.TB00371.X, 10.1111/j.1467-9892.1983.tb00371.x]
[20]   Estimation of fractional integration in the presence of data noise [J].
Haldrup, Niels ;
Nielsen, Molten Orregaard .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) :3100-3114