Investigation of low current gas tungsten arc welding using split anode calorimetry

被引:5
作者
Egerland, S. [1 ,2 ]
Colegrove, P. [1 ]
Williams, S. [1 ]
机构
[1] Cranfield Univ, Dept Welding Engn & Laser Proc, Cranfield MK43 0AL, Beds, England
[2] FRONIUS Int GmbH, 4600 Wels, Pettenbach, Austria
关键词
Split anode; Weld calorimetry; GTAW; Arc energy; Current density; Power density; Electrode; BURNING ARGON ARCS; HEAT-TRANSFER; TIG ARC; TEMPERATURE DETERMINATIONS; SPECTROSCOPIC ANALYSIS; BOUNDARY-LAYER; FLUID-FLOW; PLASMA; PRESSURE; POOL;
D O I
10.1080/13621718.2016.1189214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most previous split anode calorimetry research has applied high weld currents which exhibit pseudo Gaussian distributions of arc current and power density. In this paper we investigate low current arcs and show that both the current and power distributions have minima in the centre - varying significantly from the expected Gaussian profile. This was postulated due to the formation of the arc with the copper anode and the tungsten cathode. Furthermore, a number of parameters were varied including the step size between measurements, anode thickness and anode surface condition as well as cathode type and tip geometry. The step size between measurements significantly influenced the distribution profile and the anode thickness needed to be above 7mm to obtain consistent results.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
[31]   Optimization of parameters of dissimilar gas tungsten arc welding using grey relational analysis [J].
Kumar A. ;
Mukherjee S. ;
Agrawal S. .
Kumar, A. (1613303@iiitdmj.ac.in), 1600, MechAero Found. for Techn. Res. and Educ. Excellence (12) :157-161
[32]   The comparison of gas tungsten arc welding and flux cored arc welding effects on dual phase steel [J].
Abbas, Mahmoud ;
Hamdy, Ahmed Sayed ;
Ahmed, Essam .
MATERIALS RESEARCH EXPRESS, 2020, 7 (03)
[33]   Microstructural analysis of the anode in gas metal arc welding (GMAW) [J].
Zielinska, S. ;
Valensi, F. ;
Pellerin, N. ;
Pellerin, S. ;
Musiol, K. ;
de Izarra, Ch. ;
Briand, F. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (07) :3581-3591
[34]   Gas tungsten arc welding of α plus β titanium alloys: a review [J].
Short, A. B. .
MATERIALS SCIENCE AND TECHNOLOGY, 2009, 25 (03) :309-324
[35]   Weld penetration sensing in pulsed gas tungsten arc welding based on arc voltage [J].
Zhang Shiqi ;
Hu Shengsun ;
Wang Zhijiang .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2016, 229 :520-527
[36]   A STUDY OF MELTING EFFICIENCY IN PLASMA-ARC AND GAS TUNGSTEN ARC-WELDING [J].
FUERSCHBACH, PW ;
KNOROVSKY, GA .
WELDING JOURNAL, 1991, 70 (11) :S287-S297
[37]   Monitoring weld pool oscillation using reflected laser pattern in gas tungsten arc welding [J].
Li, Chunkai ;
Shi, Yu ;
Gu, YuFen ;
Yuan, Peng .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 255 :876-885
[38]   Investigation of arc behavior and welding formation for a novel vector gas regulated plasma arc welding [J].
Jiang, Fan ;
Peng, Shuai ;
Zhang, Guokai ;
Xu, Bin ;
Cai, Xiaoyu ;
Chen, Shujun ;
Zhang, Pengtian .
JOURNAL OF MANUFACTURING PROCESSES, 2024, 119 :768-780
[39]   Investigation on Weld Characteristic, Welding Position, Microstructure, and Mechanical Properties in Orbital Pulse Current Gas Tungsten Arc Welding of AISI 304L Stainless Steel Pipe [J].
Widyianto, Agus ;
Baskoro, Ario Sunar ;
Kiswanto, Gandjar .
INTERNATIONAL JOURNAL OF TECHNOLOGY, 2022, 13 (03) :473-483
[40]   Micro-scale gas tungsten arc welding on invar sheet [J].
Im, Jaeseung ;
Jeong, Jin Young ;
Choi, Soobong ;
Lee, Ki Hoon ;
Seo, Jeong-Hyun .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2024, 85 (04) :327-332