On elliptic systems with Sobolev critical growth

被引:53
作者
Peng, Shuangjie [1 ]
Peng, Yan-fang [2 ]
Wang, Zhi-Qiang [3 ,4 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
GLOBAL COMPACTNESS RESULT; SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; CRITICAL EXPONENT; R-N; TOPOLOGY; DOMAINS;
D O I
10.1007/s00526-016-1091-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
this paper, we study the following Dirichlet problem with Sobolev critical exponent {-Delta u=vertical bar u vertical bar(2*-2)u+alpha/2*vertical bar u vertical bar(alpha-2)vertical bar v vertical bar(beta)u, x is an element of Omega, -Delta v=vertical bar v vertical bar(2*-2)v+beta/2*vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2)v, x is an element of Omega, where alpha, beta > 1, alpha + beta = 2* := 2N/N-2 (N >= 3) and Omega = R-N or Omega is a smooth bounded domain in R-N. When Omega = R-N, we obtain a uniqueness result on the least energy solutions and show that a manifold of the synchronized type of positive solutions is non-degenerate for the above system for some ranges of the parameters alpha, beta, N. Our analysis also yields non uniqueness of positive vector solutions for other parameters. Moreover, we establish a global compactness result and we extend a classical result of Coron on the existence of positive solutions of scalar equations with critical exponent on domains with nontrivial topology to the above elliptic system.
引用
收藏
页数:30
相关论文
共 28 条
[1]  
Adachi S, 2000, CALC VAR PARTIAL DIF, V11, P63, DOI 10.1007/s005260050003
[2]  
Anbin T., 1976, J. Diff. Geom., V11, P573
[3]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[4]   A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator [J].
Bartsch, T ;
Weth, T ;
Willem, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (03) :253-268
[5]   A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system [J].
Bartsch, Thomas ;
Dancer, E. Norman ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :345-361
[6]   Hardy-Sobolev-Maz'ya type equations in bounded domains [J].
Bhakta, M. ;
Sandeep, K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) :119-139
[7]   A NOTE ON THE SOBOLEV INEQUALITY [J].
BIANCHI, G ;
EGNELL, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :18-24
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[10]   A global compactness result for singular elliptic problems involving critical Sobolev exponent [J].
Cao, DM ;
Peng, SJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (06) :1857-1866