Generalised Clopper-Pearson confidence intervals for the binomial proportion

被引:29
作者
Puza, B [1 ]
O'Neill, T [1 ]
机构
[1] Sch Finance & Appl Stat, Fac Econ & Commerce, Canberra, ACT 0200, Australia
关键词
binomial proportion; confidence interval; randomised; Clopper-Pearson; mid-P; generalised; coverage probability; expected length; tail function;
D O I
10.1080/10629360500107527
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we develop some new confidence intervals for the binomial proportion. The Clopper-Pearson interval is interpreted as an outcome of randomised confidence interval theory. The problem of randomised intervals possibly being empty is solved using a new technique involving 'tail functions, with the offshoot being a new class of randomised and Clopper-Pearson intervals. Some of the new intervals are investigated and shown to have attractive frequentist properties. Coverage probabilities and expected widths are compared and guidelines are established for constructing the optimal generalised Clopper-Pearson interval in any given situation.
引用
收藏
页码:489 / 508
页数:20
相关论文
共 27 条
[1]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[2]   On small-sample confidence intervals for parameters in discrete distributions [J].
Agresti, A ;
Min, YY .
BIOMETRICS, 2001, 57 (03) :963-971
[3]   Randomized confidence intervals of a parameter for a family of discrete exponential type distributions [J].
Akahira, M ;
Takahashi, K ;
Takeuchi, K .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (03) :1103-1128
[4]  
[Anonymous], KENDALLS ADV THEORY
[5]  
[Anonymous], 1995, Theory of Statistics
[7]   Mid-P confidence intervals: A brief review [J].
Berry, G ;
Armitage, P .
STATISTICIAN, 1995, 44 (04) :417-423
[8]   Confidence curves and improved exact confidence intervals for discrete distribution (vol 28, pg 783, 2000) [J].
Blaker, H .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (04) :681-681
[9]   Confidence curves and improved exact confidence intervals for discrete distributions [J].
Blaker, H .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (04) :783-798
[10]   BINOMIAL CONFIDENCE-INTERVALS [J].
BLYTH, CR ;
STILL, HA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (381) :108-116