Efficient finite difference solutions to the time-dependent Schrodinger equation

被引:20
作者
Nash, PL
Chen, LY
机构
[1] Div. of Earth and Physical Sciences, University of Texas at San Antonio, San Antonio
关键词
D O I
10.1006/jcph.1996.5589
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The matrix elements of the exponential of a finite difference realization of the one-dimensional Laplacian are found exactly. This matrix is used to formulate an efficient algorithm for the numerical solution to the time-dependent quantum mechanical scattering of a single particle from a time-independent potential in one-space and one-time dimension. The method generalizes to higher spatial dimensions, as well as to multiparticle problems. (C) 1997 Academic Press.
引用
收藏
页码:266 / 268
页数:3
相关论文
共 8 条
[1]   PRODUCT FORMULA ALGORITHMS FOR SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
DERAEDT, H .
COMPUTER PHYSICS REPORTS, 1987, 7 (01) :1-72
[2]   TWO-DIMENSIONAL TIME-DEPENDENT QUANTUM-MECHANICAL SCATTERING EVENT [J].
GALBRAITH, I ;
CHING, YS ;
ABRAHAM, E .
AMERICAN JOURNAL OF PHYSICS, 1984, 52 (01) :60-68
[3]   COMPUTER-GENERATED MOTION PICTURES OF 1-DIMENSIONAL QUANTUM-MECHANICAL TRANSMISSION AND REFLECTION PHENOMENA [J].
GOLDBERG, A ;
SCHEY, HM ;
SCHWARTZ, JL .
AMERICAN JOURNAL OF PHYSICS, 1967, 35 (03) :177-&
[4]  
Hardin R. H., 1973, SIAM REV, V15, DOI DOI 10.1137/1015060
[5]  
Lebedev N.N., 1972, Dover Books on Math- ematics
[6]   A COMPARISON OF DIFFERENT PROPAGATION SCHEMES FOR THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
LEFORESTIER, C ;
BISSELING, RH ;
CERJAN, C ;
FEIT, MD ;
FRIESNER, R ;
GULDBERG, A ;
HAMMERICH, A ;
JOLICARD, G ;
KARRLEIN, W ;
MEYER, HD ;
LIPKIN, N ;
RONCERO, O ;
KOSLOFF, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 94 (01) :59-80
[7]  
Magnus W., 1966, FORMULAS THEOREMS SP, V52, P508
[8]   VISUALIZING QUANTUM SCATTERING ON THE CM-2 SUPERCOMPUTER [J].
RICHARDSON, JL .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 63 (1-3) :84-94